The optimal composition of the surface preparation for polyester materials by the method of mathematical planning of the experiment

Authors

  • Ol'ga V. Reva State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus
  • Aleksandr S. Luk'yanov State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus
  • Dmitriy N. Arestovich State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus
  • Valentina V. Bogdanova The Research Institute for Physical Chemical Problems of the Belarusian State University; ul. Leningradskaya, 14, Minsk, 220050, Belarus
  • Aleksandr S. Platonov State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus https://orcid.org/0000-0001-5463-6029

DOI:

https://doi.org/10.33408/2519-237X.2018.2-1.45

Keywords:

polyester material, fire retardant treatment, phosphorus-nitrogen-containing flame retardants, mathematical planning, full-factor experiment, technological scheme

Abstract

Purpose. It this article it is shown that the main contribution to the provision of subsequent chemical interaction between the surface of the treated material and the flame retardant composition is made by a certain ratio of hydrochloric acid and phosphoric acid at the stage of etching of the material.

Methods. The article describes the method of mathematical design of the experiment, during the application of which the components of the etching composition and their concentrations were determined, which have a determining effect on the reactivity of the surface of polyethylene terephthalate.

Findings. The carried out full-factor experiment allows to state that a significant contribution to the efficiency of the activation of the polyester surface is made by phosphoric and hydrochloric acids, which are in a certain ratio to each other. While the concentrations of acetic and sulfuric acids are of secondary importance.

Application field of research. The results of the study can be used in the formulation of the flame retardant composition for the textile industry.

Conclusions. When changing the etchant formulation, in accordance with the obtained concentrations of the etchant components determining the maximum amount of the flame retardant retained on the polymer while optimizing the PFE by the Box-Wilson method, a new etching composition of the polyester material is obtained, providing chemically bonding to the polyester material of the inorganic flame retardant in an amount sufficient to achieve a stable fire-retardant effect.

Author Biographies

Ol'ga V. Reva, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

Chair of Combustion and Explosion Processes, Associate Professor; PhD in Chemical Sciences, Associate Professor

Aleksandr S. Luk'yanov, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

Senior Inspector

Dmitriy N. Arestovich, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

Chair of Emergency Management, Associate Professor; PhD in Technical Sciences

Valentina V. Bogdanova, The Research Institute for Physical Chemical Problems of the Belarusian State University; ul. Leningradskaya, 14, Minsk, 220050, Belarus

Head of Laboratory; Grand PhD in Chemical Sciences, Professor

Aleksandr S. Platonov, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

Department of Scientific and Innovation Activity, Leading Researcher; PhD in Physical and Mathematical Sciences, Associate Professor

References

Perepelkin K.E. Sovremennye khimicheskie volokna i perspektivy ikh primeneniya v tekstil'noy promyshlennosti [Modern chemical fibers and prospects for their use in the textile industry]. Ros. khim. zh. im. D.I. Mendeleeva. Vol. XLVI. Pp. 31–48. (rus)

Madorskiy S.M. Termicheskoe razlozhenie organicheskikh polimerov [Thermal decomposition of organic polymers]: transl. from English. Publ. house «Mir», 1967. 328 p. (rus)

Moryganov A.P. Razrabotka novykh sposobov polucheniya i modifikatsii perspektivnykh tekstil'nykh materialov na osnove otechestvennogo syr'ya [Development of new methods for obtaining and modifying promising materials based on domestic raw materials]. Khimiya, 1998. No. 1 (13). Pp. 82–87. (rus)

Sinyagin M.N. Novoe v oblasti fizicheskoy modifikatsii khimicheskikh volokon, sozdanie perspektiv assortimenta tkaney [New in the field of physical modification of chemical fibers, creation of prospects for the assortment of tissues]. Moscow, 1979. 220 p. (rus)

Syrbu S.A. Burmistrov V.A., Samoylov D.B. Razrabotka ognezashchitnykh sostavov dlya tekstil'nykh materialov [Development of fire retardant compounds for textile materials]. Tekhnologii tekhnosfernoy bezopasnosti, 2011. Issue 5 (39). 7 p. (rus)

Luk'yanov A.S. Effektivnaya ognezashchitnaya obrabotka tekstil'nykh materialov na osnove poliefira [Effective fire retardant treatment of textile materials based on polyester]. Vestnik Fonda fundamental'nykh issledovaniy, 2017. No. 4. 94 p. (rus)

Reva O.V. Zavisimost' effektivnosti ognezashchity netkanogo poliefirnogo materiala ot khimicheskoy prirody azot-fosforsoderzhashchego antipirena [Dependence of the effectiveness of fireproofing of non-woven polyester material on the chemical nature of the nitrogen-phosphorus-containing flame retardant]. Vestnik BGU. Seriya 2, Khimiya. Biologiya. Geografiya, 2017. 78 p. (rus)

Khalturinskiy N.A., Popova T.V., Berlin A.A. Gorenie polimerov i mekhanizm deystviya antipirenov [Combustion of polymers and the mechanism of action of flame retardants]. Uspekhi khimii. 1984. Vol. 53. No 2. Pp. 326–426. (rus)

Asaturyan V.I. Teoriya planirovaniya eksperimenta [Theory of experiment planning]. Moscow: Radio i svyaz'. 1983. 248 p. (rus)

Sautin S.N. Planirovanie eksperimenta v khimii i khimicheskoy tekhnologii [Planning an experiment in chemistry and chemical technology]. Leningrad: Khimiya. 1975. 31 p. (rus)

Gaydadin A.N., Efremova S.A. Primenenie polnogo faktornogo eksperimenta pri provedenii issledovaniy [Application of the full factorial experiment in the conduct of research]: a method. directions. VolgGTU. Volgograd. 2008. 11 p. (rus)

Khokhmanov K.M. Osnovy planirovaniya eksperimenta [Basics of experiment planning]: methodical manual. East-Siberian State Technological University, RF. Ulan-Ude. 2001. 38 p. (rus)

Downloads


Abstract views: 195
PDF Downloads: 118

Published

2018-02-15

How to Cite

Reva О., Luk’yanov А., Arestovich Д., Bogdanova В. and Platonov А. (2018) “The optimal composition of the surface preparation for polyester materials by the method of mathematical planning of the experiment”, Journal of Civil Protection, 2(1), pp. 45–52. doi: 10.33408/2519-237X.2018.2-1.45.