Coronavirus pandemic: facts of the spread and evolution of a dangerous infection and technology of confrontation
DOI:
https://doi.org/10.33408/2519-237X.2021.5-4.466Keywords:
coronavirus, pandemic, bioinformatics, medical systems, genomics, especially dangerous infections, mathematical modeling, immunoinformatics, medical drones, forecasting, antiviral therapyAbstract
Purpose. To study interdisciplinary and describe briefly the key issues of epidemiology, etiology of coronavirus infection, concomitant infections (in particular, tuberculosis and HIV infection), as well as the use of an arsenal of medical cybernetics, bioinformatics and other related physical, mathematical and technical sciences for solving problems in the field of epidemiology, modeling and monitoring of the disease, medical prevention and treatment of patients.
Methods. The analysis of research publications from bibliographic databases such as Google scholar (https://scholar.google.ru), EBSCO (https://www.ebsco.com), CyberLeninka (https://cyberleninka.ru), PubMed (https://pubmed.ncbi.nlm.nih.gov), IEEE explore (https://ieeexplore.ieee.org/Xplore/home.jsp), BioRxiv (https: //www.biorxiv.org)
Findings. Modern data on the etiology and epidemiology of the new coronavirus infection are highlighted. The possibilities of using modern methods of bioinformatics and artificial intelligence, mathematical modeling and forecasting in this subject area are presented. Selected aspects of the use of immunoinformatics and the development of effective and safe vaccines, the real possibilities of using medical drones to combat COVID-19 are shown.
Application field of research. The material of the article can be used as a helpful source of information for scientists, workers in medical, biological, biotechnological and related specialties, as well as in the educational process implemented by institutions of higher education and additional education of specialists. The article will also be of interest to a wide range of readers.
References
Kamkin E.G. et al. Profilaktika, diagnostika i lechenie novoy koronavirusnoy infektsii (COVID-19) [Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)]: temporary methodological recommendations. Moscow: Ministry of Health of the Russian Federation, 2020. Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdf (accessed: October 21, 2021). (rus)
Zaytsev A.A., Sinopal'nikov A.I Prakticheskie rekomendatsii po vedeniyu patsientov s netyazheloy vnebol'nichnoy pnevmoniey [Practical guidelines for the patient management with non-severe community-acquired pneumonia]. Russkiy meditsinskiy zhurnal, 2020. Vol. 28, No. 4. Pp. 19–23. (rus)
Nikonov E.L., Kashin S.V., Kuvaev R.O., Rezvaja, A.A. COVID-19: infektsionnaya bezopasnost' v endoskopicheskom otdelenii. Metodicheskie rekomendatsii [COVID-19: Infection safety in the endoscopic department. Methodological recommendations]. Moskovskaya meditsina, 2020. No. S2 (36). Pp. 64–71. (rus)
Obesnyuk V.F. Dinamika lokal'noy epidemicheskoy vspyshki SOVID-19 cherez prizmu kompartment-modelirovaniya [Dynamics of the local epidemic COVID-19 outbreak through the prism of compartment modeling]. Health Risk Analysis. 2020. Vol. 2, No. 2. Pp. 83–91. (rus). DOI: https://www.doi.org/10.21668/health.risk/2020.2.09.
Sokouti M., Sadeghi R., Pashazadeh S., Eslami S., Sokouti M., Ghojazadeh M., Sokouti B. Meta-MUMS COVID-19 web server: an online daily monitoring server for comparative and cumulative epidemiological analysis. Journal of public health, 2021. 3 p. DOI: https://www.doi.org/10.1007/s10389-020-01433-6.
Gorenkov D.V., Khantimirova L.M., Shevtsov V.A., Rukavishnikov A.V., Merkulov A.V., Olefir Yu.V. Vspyshka novogo infektsionnogo zabolevaniya COVID-19: β-koronavirusy kak ugroza global'nomu zdravookhraneniyu [An outbreak of a new infectious disease COVID-19: β-coronaviruses as a threat to global healthcare]. BIOpreparations. Prevention, Diagnosis, Treatment. 2020. Vol. 20, No. 1. Pp. 6–20. (rus). DOI: https://www.doi.org/10.30895/2221-996X-2020-20-1-6-20.
Smetanina S.V. Novaya koronavirusnaya infektsiya (COVID-19): epidemiologiya, klinika, diagnostika, lechenie i profilaktika [New coronavirus infection (COVID-19): epidemiology, clinic, diagnosis, treatment and prevention]. Moskovskaya meditsina, 2020. No. S1 (35). Pp. 14–15. (rus)
Romanov B.K. Koronavirusnaya infektsiya COVID-2019 [Coronavirus disease COVID-2019]. Safety and Risk of Pharmacotherapy, 2020. Vol. 8, No. 1. Pp. 3–8. (rus). DOI: https://www.doi.org/10.30895/2312-7821-2020-8-1-3-8.
Koyama T., Platt D., Parida L. Variant analysis of SARS-CoV-2 genomes. Bulletin of the World Health Organization, 2020. Vol. 98, No. 7. Pp. 495–504. DOI: https://www.doi.org/10.2471/BLT.20.253591.
Vilsker M., Moosa Y., Nooij S. Fonseca V., Ghysens Y., Dumon K., Pauwels R., Alcantara L.C., Eynden E.V., Vandamme A.-M., Deforche K., Oliveira T. Genome Detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics, 2019. Vol. 35, Iss. 5. Pp. 871–873. DOI: https://www.doi.org/10.1093/bioinformatics/bty695.
Cleemput S., Dumon W., Fonseca V., Karim W.A., Giovanetti M., Alcantara L.C., Deforche K., Oliveira T. Genome Detective Coronavirus Typing Tool for rapid identification and characterization of novel coronavirus genomes. Bioinformatics, 2020. Vol. 36, Iss. 11. Pp. 3552–3555. DOI: https://www.doi.org/10.1093/bioinformatics/btaa145.
Adadi P., Kanwugu O.N. Living with HIV in the time of COVID-19: A glimpse of hope. Journal of Medical Virology, 2020. Vol. 93, Iss. 1. Pp. 59–60. DOI: https://www.doi.org/10.1002/jmv.26118.
Adepoju P. Tuberculosis and HIV responses threatened by COVID-19. The Lancet HIV, 2020. Vol. 7, Iss. 5. Pp. e319–e320. DOI: https://www.doi.org/10.1016/S2352-3018(20)30109-0.
Algarin A.B., Varas-Rodriguez E., Valdivia C., Fennie K.P., Larkey L., Hu N., Ibanez G.E. Symptoms, Stress, and HIV-Related Care Among Older People Living with HIV During the COVID-19 Pandemic, Miami, Florida. AIDS and Behavior, 2020. Vol. 24, Iss. 8. Pp. 2236–2238. DOI: https://www.doi.org/10.1007/s10461-020-02869-3.
Amimo F., Lambert B., Magit A. What does the COVID-19 pandemic mean for HIV, tuberculosis, and malaria control? Tropical Medicine and Health, 2020. Vol. 48. Article 32. DOI: https://www.doi.org/10.1186/s41182-020-00219-6.
Ballester-Arnal, R., Gil-Llario, M.D. The Virus that Changed Spain: Impact of COVID-19 on People with HIV. AIDS and Behavior, 2020. Vol. 24, Iss. 8. P. 2253–2257. DOI: https://www.doi.org/10.1007/s10461-020-02877-3.
Beima-Sofie K., Ortblad K.F., Swanson F. Graham S.M., Stekler J.D., Simoni J.M. “Keep It Going if You Can”: HIV Service Provision for Priority Populations During the COVID-19 Pandemic in Seattle, WA. AIDS and Behavior, 2020. Vol. 24, Iss. 10. Pp. 2760–2763. DOI: https://www.doi.org/10.1007/s10461-020-02902-5.
Blanco J.L., Ambrosioni J., Garcia F., Martinez E., Soriano A., Mallolas J., Miro J.M. COVID-19 in patients with HIV: clinical case series. The Lancet HIV, 2020. Vol. 7, Iss. 5. Pp. e314-e316. DOI: https://www.doi.org/10.1016/S2352-3018(20)30111-9.
Childs K., Post F.A., Norcross C., Ottaway Z., Hamlyn E., Quinn K., Juniper T., Taylor C. Hospitalized patients with COVID-19 and human immunodeficiency virus: a case series. Clinical Infectious Diseases, 2020. Vol. 71, Iss. 8. Pp. 2021–2022. DOI: https://www.doi.org/10.1093/cid/ciaa657.
Dourado I., Magno L., Soares F., Massa P., Nunn A., Dalal Sh., Grangeiro A. Adapting to the COVID-19 Pandemic: Continuing HIV Prevention Services for Adolescents Through Telemonitoring, Brazil. AIDS and Behavior, 2020. Vol. 24, Iss. 7. P. 1994–1999. DOI: https://www.doi.org/10.1007/s10461-020-02927-w.
Drain P.K., Garrett N. SARS-CoV-2 pandemic expanding in sub-Saharan Africa: Considerations for COVID-19 in people living with HIV. EClinicalMedicine, 2020. Vol. 22. Article 100342. DOI: https://www.doi.org/10.1016/j.eclinm.2020.100342.
Harkness A., Behar-Zusman V., Safren S.A. Understanding the Impact of COVID-19 on Latino Sexual Minority Men in a US HIV Hot Spot. AIDS and Behavior, 2020. Vol. 24, Iss. 7. Pp. 2017–2023. DOI: https://www.doi.org/10.1007/s10461-020-02862-w.
Lodge W. II, Kuchukhidze S. COVID-19, HIV, and Migrant Workers: The Double Burden of the Two Viruses. AIDS Patient Care STDs, 2020. Vol. 34, No. 6. Pp. 249–250. DOI: https://www.doi.org/10.1089/apc.2020.0092.
Logie C.H., Turan J.M. How Do We Balance Tensions Between COVID-19 Public Health Responses and Stigma Mitigation? Learning from HIV Research. AIDS and Behavior, 2020. Vol. 24, Iss. 7. Pp. 2003–2006. DOI: https://www.doi.org/10.1007/s10461-020-02856-8.
Sagaon-Teyssier L., Yattassaye A., Bourrelly M., Keita B.D., Spire B. The COVID-19 response must integrate people living with HIV needs in Sub-Saharan Africa: the case of Mali. Tropical Medicine and Health, 2020. Vol. 48. Article 41. DOI: https://www.doi.org/10.1186/s41182-020-00228-5.
Marziali M.E., Card K.G., McLinden T., Wang L., Trigg J., Hogg R.S. Physical Distancing in COVID-19 May Exacerbate Experiences of Social Isolation among People Living with HIV. AIDS and Behavior, 2020. Vol. 24, Iss. 8. P. 2250–2252. DOI: https://www.doi.org/10.1007/s10461-020-02872-8.
Uciechowska-Kaczmarzyk U., Chauvot de Beauchene I., Samsonov S.A. Docking software performance in protein-glycosaminoglycan systems. Journal of Molecular Graphics and Modelling, 2019. Vol. 90. Pp. 42–50. DOI: https://www.doi.org/10.1016/j.jmgm.2019.04.001.
Paul D.S., Gautham N. MOLS 2.0: software package for peptide modeling and protein-ligand docking. Journal of Molecular Modeling, 2016. Vol. 22, Iss. 10. Article 239. DOI: https://www.doi.org/10.1007/s00894-016-3106-x.
Ohue M., Shimoda T., Suzuki S., Matsuzaki Y., Ishida T., Akiyama Y. MEGADOCK 4.0: an ultra–high-performance protein–protein docking software for heterogeneous supercomputers. Bioinformatics, 2014. Vol. 30, Iss. 22. Pp. 3281–3283. DOI: https://www.doi.org/10.1093/bioinformatics/btu532.
Cubuk H., Ozbil M. Comparison of clinically approved molecules on SARS-CoV-2 drug target proteins: a molecular docking study. Turkish Journal of Chemistry, 2021. Vol. 45, № 1. Pp. 35–41. DOI: https://www.doi.org/10.3906/kim-2008-35.
Biesiada J., Porollo A., Velayutham P., Kouril M., Meller J. Survey of public domain software for docking simulations and virtual screening. Human Genomics, 2011. Vol. 5, № 5. Pp. 497–505. DOI: https://www.doi.org/10.1186/1479-7364-5-5-497.
Woo P.C.Y., Huang Y., Lau S.K.P., Yuen K.-Y. Coronavirus Genomics and Bioinformatics Analysis. Viruses, 2010. Vol. 2, Iss. 8. Pp. 1804–1820. DOI: https://www.doi.org/10.3390/v2081803.
Abro S.H., Ullman K., Belak S., Baule C. Bioinformatics and evolutionary insight on the spike glycoprotein gene of QX-like and Massachusetts strains of infectious bronchitis virus. Virology Journal, 2012. Vol. 9. Article 211. DOI: https://www.doi.org/10.1186/1743-422X-9-211.
Feng D., Barnes B.J. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity. Frontiers in Immunology, 2013. Vol. 4. Article 291. DOI: https://www.doi.org/10.3389/fimmu.2013.00291.
Brinkmann A., Andrusch A., Belka A., Wylezich C. et al. Proficiency Testing of Virus Diagnostics Based on Bioinformatics Analysis of Simulated In Silico High-Throughput Sequencing Data Sets. Journal of Clinical Microbiology, 2019. Vol. 57, Iss. 8. Article e00466-19. DOI: https://www.doi.org/10.1128/JCM.00466-19.
Kellam P., Alba M.M. Virus bioinformatics: databases and recent applications. Applied Bioinformatics, 2002. Vol. 1, No. 1. Pp. 37–42.
Xing J.F., Zhu R.N., Qian Y., Zhao L.Q., Deng J., Wang F., Sun Y. [Sequence analysis for genes encoding nucleoprotein and envelope protein of a new human coronavirus NL63 identified from a pediatric patient in Beijing by bioinformatics]. Bing Du Xue Bao, 2007. Vol. 23, No. 4. Article 245-51.
Zhou Y., Routh A. Mapping RNA–capsid interactions and RNA secondary structure within virus particles using next-generation sequencing. Nucleic Acids Research, 2020. Vol. 48, Iss. 2. Pp. e12. DOI: https://www.doi.org/10.1093/nar/gkz1124.
Sheng Z., Huang C., Liu R. Guo Y., Ran Zh., Li F., Wang D. Next-Generation Sequencing Analysis of Cellular Response to Influenza B Virus Infection. Viruses, 2020. Vol. 12, Iss. 4. Article 383. DOI: https://www.doi.org/10.3390/v12040383.
Zhang Y., Hong K., Zou Y., Bu H. Rapid detection of human herpes virus by next-generation sequencing in a patient with encephalitis. Virology Journal, 2019. Vol. 16. Article 104. DOI: https://www.doi.org/10.1186/s12985-019-1205-x.
Teng J.L.L., Wernery U., Lee H.H., Joseph S., Fung J., Elizabeth S.K., Yeong K.Y., Kinne J., Chan K.-H., Lau S.K.P., Woo P.C.Y. First Isolation and Rapid Identification of Newcastle Disease Virus from Aborted Fetus of Dromedary Camel Using Next-Generation Sequencing. Viruses, 2019. Vol. 11, Iss. 9. Article 810. DOI: https://www.doi.org/10.3390/v11090810.
Li T., Mbala-Kingebeni P., Naccache S.N., Theze J., Bouquet J. et al. Metagenomic Next-Generation Sequencing of the 2014 Ebola Virus Disease Outbreak in the Democratic Republic of the Congo. Journal of Clinical Microbiology, 2019. Vol. 57, Iss. 9. Article e00827-19. DOI: https://www.doi.org/10.1128/JCM.00827-19.
Kustin T., Ling G., Sharabi S., Ram D., Friedman N., Zuckerman N., Bucris E.D., Glatman-Freedman A., Stern A., Mandelboim M. A method to identify respiratory virus infections in clinical samples using next-generation sequencing. Scientific Reports, 2019. Vol. 9. Article 2606. DOI: https://www.doi.org/10.1038/s41598-018-37483-w.
Goldhill D.H., Langat P., Xie H., Galiano M., Miah Sh., Kellam P., Zambon M., Lackenby A., Barclay W.S. Determining the Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing. Journal of Virology, 2019. Vol. 93, Iss. 2. Article e01217-18. DOI: https://www.doi.org/10.1128/JVI.01217-18.
Mit'kovskaya N.P., Karpov I.A., Arutyunov G.P., Grigorenko E.A., Ruzanov D.Yu., Statkevich T.V., Tarlovskaya E.I. Koronavirusnaya infektsiya COVID-19 (obzor mezhdunarodnyh nauchnyh dannyh). [COVID-19 сoronavirus infection (review of international research data)]. Emergency cardiology and cardiovascular risks. 2020. Vol. 4. No. 1. Pp. 784–815. (rus)
Siddell S.G. The Coronaviridae. Boston: Springer, 1995. 418 p. DOI: https://www.doi.org/10.1007/978-1-4899-1531-3.
Koyama T., Weeraratne D., Snowdon J.L., Parida L. Emergence of Drift Variants That May Affect COVID-19 Vaccine Development and Antibody Treatment. Pathogens, 2020. Vol. 9, Iss. 5. Article 324. DOI: https://www.doi.org/10.3390/pathogens9050324.
Koyama T., Platt D., Parida L. Variant analysis of SARS-CoV-2 genomes. Bulletin of the World Health Organization, 2020. Vol. 98, No. 7. P. 495–504. DOI: https://www.doi.org/10.2471/BLT.20.253591.
Kong R., Yang G., Xue R., Liu M., Wang F., Hu J., Guo X., Chang Sh. COVID-19 Docking Server: An interactive server for docking small molecules, peptides and antibodies against potential targets of COVID-19. Bioinformatics, 2020. Vol. 36, Iss. 20. P. 5109–5111. DOI: https://www.doi.org/10.1093/bioinformatics/btaa645.
Gibson K.M., Steiner M.C., Rentia U., Bendall M.L., Perez-Losada M., Crandall K.A. Validation of Variant Assembly Using HAPHPIPE with Next-Generation Sequence Data from Viruses. Viruses, 2020. Vol. 12, Iss. 7. Article 758. DOI: https://www.doi.org/10.3390/v12070758.
Neill J.D., Bayles D.O., Ridpath J.F. Simultaneous rapid sequencing of multiple RNA virus genomes. Journal of Virological Methods, 2014. Vol. 201. Pp. 68–72. DOI: https://www.doi.org/10.1016/j.jviromet.2014.02.016.
Maier H.J., Bickerton E., Britton P. Coronaviruses. Methods and protocols. New York: Humana Press, 2015. 285 p. DOI: https://www.doi.org/10.1007/978-1-4939-2438-7.
Chen H.-Z., Tang L.-L., Yu X.-L., Zhou J., Chang Y.-F., Wu X. Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2. Infectious Diseases of Poverty, 2020. Vol. 9. Article 88. DOI: https://www.doi.org/10.1186/s40249-020-00713-3.
Bhattacharya M., Sharma A.R., Patra P., Ghosh P., Sharma G., Patra B.C., Lee S.-S., Chakraborty Ch. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. Journal of Medical Virology. – 2020. – Vol. 92, Iss. 6. – Pp. 618–631. DOI: https://www.doi.org/10.1002/jmv.25736.
Lian J., Jin X., Hao Sh., Zhang X., Hu J. et al. Epidemiological, clinical, and virological characteristics of 465 hospitalized cases of coronavirus disease 2019 (COVID-19) from Zhejiang province in China. Influenza and Other Respiratory Viruses, 2020. Vol. 14, Iss. 5. Pp. 564–574. DOI: https://www.doi.org/10.1111/irv.12758.
Llanes A., Restrepo C.M., Caballero Z., Rajeev S., Kennedy M.A., Lleonart R. Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. International Journal of Molecular Sciences, 2020. Vol. 21, Iss. 12. Article 4546. DOI: https://www.doi.org/10.3390/ijms21124546.
Saxena S.K. Coronavirus Disease 2019 (COVID-19): Epidemiology, Pathogenesis, Diagnosis, and Therapeutics. Singapore: Springer, 2020. 213 p. DOI: https://www.doi.org/10.1007/978-981-15-4814-7.
Fong S.J., Dey N., Chaki J. AI-Enabled Technologies that Fight the Coronavirus Outbreak. Artificial Intelligence for Coronavirus Outbreak. SpringerBriefs in Applied Sciences and Technology. Singapore: Springer, 2021. Pp. 23–45. DOI: https://www.doi.org/10.1007/978-981-15-5936-5_2.
Lal S.K. Molecular Biology of the SARS-coronavirus. Berlin: Springer, 2010. 328 p. DOI: https://www.doi.org/10.1007/978-3-642-03683-5.
Wang L. Animal Coronaviruses. New York: Humana Press, Springer, 2016. 218 p. DOI: https://www.doi.org/10.1007/978-1-4939-3414-0.
Andrianov A.M., Kornoushenko Y.V., Karpenko A.D., Bosko I.P., Tuzikov A.V. Computational discovery of small drug-like compounds as potential inhibitors of SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 2020. Vol. 39, Iss. 15. P. 5779–5791. DOI: https://www.doi.org/10.1080/07391102.2020.1792989.
Dabravolski S.A., Kavalionak Y.K. SARS-CoV-2: Structural diversity, phylogeny, and potential animal host identification of spike glycoprotein. Journal of Medical Virology, 2020. Vol. 92, Iss. 9. Pp. 1690–1694. DOI: https://www.doi.org/10.1002/jmv.25976.
Sandmann F.G., White P.J., Ramsay M., Jit M. Optimizing Benefits of Testing Key Workers for Infection with SARS-CoV-2: A Mathematical Modeling Analysis. Clinical Infectious Diseases, 2020. Vol. 71, Iss. 12. Pp. 3196–3203. DOI: https://www.doi.org/10.1093/cid/ciaa901.
Kucharski A.J., Klepac P., Conlan A.J.K., Tang M.L., Fry H., Gog J.R., Edmunds W.J. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. The Lancet Infectious Diseases, 2020. Vol. 20, Iss. 10. Pp. 1151–1160. DOI: https://www.doi.org/10.1016/S1473-3099(20)30457-6.
Overton C.E., Stage H.B., Ahmad Sh., Curran-Sebastian J., Dark P., Das R., Fearon E., Felton T. et al. Using statistics and mathematical modelling to understand infectious disease outbreaks: COVID-19 as an example. Infectious Disease Modelling, 2020. Vol. 5. Pp. 409–441. DOI: https://www.doi.org/10.1016/j.idm.2020.06.008.
Badr H.S., Du H., Marshall M., Dong E., Squire M.M., Gardner L.M. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infectious Diseases, 2020. Vol. 20, Iss. 11. Pp. 1247–1254. DOI: https://www.doi.org/10.1016/S1473-3099(20)30553-3.
Kassa S.M., Njagarah J.B.H., Terefe Y.A. Analysis of the mitigation strategies for COVID-19: From mathematical modelling perspective. Chaos, Solitons & Fractals, 2020. Vol. 138. Article 109968. DOI: https://www.doi.org/10.1016/j.chaos.2020.109968.
Ambikapathy B., Krishnamurthy K. Mathematical Modelling to Assess the Impact of Lockdown on COVID-19 Transmission in India: Model Development and Validation. JMIR Public Health and Surveillance, 2020. Vol. 6, No. 2. Article e19368. DOI: https://www.doi.org/10.2196/19368.
Panovska-Griffiths J. Can mathematical modelling solve the current Covid-19 crisis? BMC Public Health, 2020. Vol. 20. Article 551. DOI: https://www.doi.org/10.1186/s12889-020-08671-z.
Tuite A.R., Fisman D.N., Greer A.L. Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada. Canadian Medical Association Journal, 2020. Vol. 192, Iss. 19. Pp. E497–E505. DOI: https://www.doi.org/10.1503/cmaj.200476.
Kucharski A.J., Russell T.W., Diamond Ch., Liu Y., Edmunds J., Funk S., Eggo R.M. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. The Lancet Infectious Diseases, 2020. Vol. 20, Iss. 5. P. 553–558. DOI: https://www.doi.org/10.1016/S1473-3099(20)30144-4.
Zheng N., Du S., Wang J., Zhang H., Cui W., Kang Z., Yang T., Lou B., Chi Y., Long H., Ma M., Yuan Q., Zhang Sh., Zhang D., Ye F., Xin J. Predicting COVID-19 in China Using Hybrid AI Model. IEEE Transactions on Cybernetics, 2020. Vol. 50, No. 7. Pp. 2891–2904. DOI: https://www.doi.org/10.1109/TCYB.2020.2990162.
Singh S., Parmar K.S., Kumar J., Makkhan S.J.S. Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19. Chaos, Solitons & Fractals, 2020. Vol. 135. Article 109866. DOI: https://www.doi.org/10.1016/j.chaos.2020.109866.
Chakraborty T., Ghosh I. Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis. Chaos, Solitons & Fractals, 2020. Vol. 135. Article 109850. DOI: https://www.doi.org/10.1016/j.chaos.2020.109850.
Harjule P., Tiwari V., Kumar A. Mathematical models to predict COVID-19 outbreak: An interim review. Journal of Interdisciplinary Mathematics, 2021. Vol. 24, № 2. Pp. 259–284. DOI: https://www.doi.org/10.1080/09720502.2020.1848316.
Saxena A., Chandra S. Artificial intelligence and machine learning in healthcare. Singapore: Springer, 2021. 228 p. DOI: https://www.doi.org/10.1007/978-981-16-0811-7.
Banerjee A., Ray S., Vorselaars B., Kitson J., Mamalakis M., Weeks S., Baker M., Mackenzie L.S. Use of Machine Learning and Artificial Intelligence to predict SARS-CoV-2 infection from Full Blood Counts in a population. International Immunopharmacology, 2020. Vol. 86. Article 106705. DOI: https://www.doi.org/10.1016/j.intimp.2020.106705.
Heo L., Feig M. Modeling of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Proteins by Machine Learning and Physics-Based Refinement. BioRxiv.org – the preprint server for Biology. Preprint posted March 28, 2020. DOI: https://www.doi.org/10.1101/2020.03.25.008904.
Saba A.I., Elsheikh A.H. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks. Process Safety and Environmental Protection, 2020. Vol. 141. P. 1–8. DOI: https://www.doi.org/10.1016/j.psep.2020.05.029.
Prem K., Liu Y., Russell T.W., Kucharski A.J., Eggo R.M., Davies N. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health, 2020. Vol. 5, Iss. 5. Pp. e261-e270. DOI: https://www.doi.org/10.1016/S2468-2667(20)30073-6.
Benvenuto D., Giovanetti M., Vassallo L., Angeletti S., Ciccozzi M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief, 2020. Vol. 29. Article 105340. DOI: https://www.doi.org/10.1016/j.dib.2020.105340.
Zhang Z., Jain S. Mathematical model of Ebola and Covid-19 with fractional differential operators: Non-Markovian process and class for virus pathogen in the environment. Chaos, Solitons & Fractals, 2020. Vol. 140. Article 110175. DOI: https://www.doi.org/10.1016/j.chaos.2020.110175.
Zhang Y., Li Y., Wang L., Li M., Zhou X. Evaluating Transmission Heterogeneity and Super-Spreading Event of COVID-19 in a Metropolis of China. International Journal of Environmental Research and Public Health, 2020. Vol. 17, Iss. 10. Article 3705. DOI: https://www.doi.org/10.3390/ijerph17103705.
Zhang F., Zhang J., Cao M., Zhang Y., Hui C. Exponential Damping: The Key to Successful Containment of COVID-19. Frontiers in Public Health, 2020. Vol. 8. Article 580619. DOI: https://www.doi.org/10.3389/fpubh.2020.580619.
Petropoulos F., Makridakis S., Stylianou N. COVID-19: Forecasting confirmed cases and deaths with a simple time-series model. International Journal of Forecasting, 2020. Article in Press. DOI: https://www.doi.org/10.1016/j.ijforecast.2020.11.010.
Petropoulos F., Makridakis S. Forecasting the novel coronavirus COVID-19. PLoS One, 2020. Vol. 15, Iss. 3. Article e0231236. DOI: https://www.doi.org/10.1371/journal.pone.0231236.
Lakman I.A., Agapitov A.A., Sadikova L.F., Chernenko O.V., Novikov S.V., Popov D.V., Pavlov V.N., Gareeva D.F., Idrisov B.T., Bilyalov A.R., Zagidullin N.Sh. Vozmozhnosti matematicheskogo prognozirovaniya koronavirusnoy infektsii v Rossiyskoy Federatsii [COVID-19 mathematical forecasting in the Russian Federation]. Arterial’naya Gipertenziya, 2020. Vol. 26. No. 3. Pp. 288–294. (rus). DOI: https://www.doi.org/10.18705/1607-419X-2020-26-3-288-294.
Grinchuk P.S., Fisenko S.P. Physical Kinetics and Simulation of the Spread of an Epidemic. Journal of Engineering Physics and Thermophysics, 2021. Vol. 94, No. 1. DOI: https://www.doi.org/10.1007/s10891-021-02267-z.
Pashchenkov M.V., Khaitov M.R. Immunnyy otvet protiv epidemicheskikh koronavirusov [Immune response against epidemic coronaviruses]. Immunologiya. 2020. Vol. 41. No. 1. Pp. 5–19. (rus). DOI: https://www.doi.org/10.33029/0206-4952-2020-41-1-5-18.
Smith T.R.F., Patel A., Ramos S., Elwood D., Zhu X. et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nature Communications, 2020. Vol. 11. Article 2601. DOI: https://www.doi.org/10.1038/s41467-020-16505-0.
Poland G.A., Ovsyannikova I.G., Crooke S.N., Kennedy R.B. SARS-CoV-2 vaccine development: current status. Mayo Clinic Proceedings, 2020. Vol. 95, Iss. 10. Pp. 2172–2188. DOI: https://www.doi.org/10.1016/j.mayocp.2020.07.021.
Yarmarkovich M., Warrington J.M., Farrel A., Maris J.M. Identification of SARS-CoV-2 Vaccine Epitopes Predicted to Induce Long-Term Population-Scale Immunity. Cell Reports Medicine, 2020. Vol. 1, Iss. 3. Article 100036. DOI: https://www.doi.org/10.1016/j.xcrm.2020.100036.
Wang D., Mai J., Zhou W., Yu W., Zhan Y., Wang N., Epstein N.D., Yang Y. Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design. Vaccines (Basel), 2020. Vol. 8, Iss. 3. Article 355. DOI: https://www.doi.org/10.3390/vaccines8030355.
Tohidinia M., Sefid F. Identification B and T-Cell epitopes and functional exposed amino acids of S protein as a potential vaccine candidate against SARS-CoV-2/COVID-19. Microbial Pathogenesis, 2020. Vol. 148. Article 104459. DOI: https://www.doi.org/10.1016/j.micpath.2020.104459.
Tilocca B., Soggiu A., Sanguinetti M., Musella V., Britti D., Bonizzi L., Urbani A., Roncada P. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes and Infection, 2020. Vol. 22, Iss. 4–5. P. 188–194. DOI: https://www.doi.org/10.1016/j.micinf.2020.04.002.
Shivarov V., Petrov P.K., Pashov A.D. Potential SARS-CoV-2 Preimmune IgM Epitopes. Frontiers in Immunology, 2020. Vol. 11. Article 932. DOI: https://www.doi.org/10.3389/fimmu.2020.00932.
Ranga V., Niemela E., Tamirat M.Z., Eriksson J.E., Airenne T.T., Johnson M.S. Immunogenic SARS-CoV-2 Epitopes: In Silico Study Towards Better Understanding of COVID-19 Disease-Paving the Way for Vaccine Development. Vaccines (Basel), 2020. Vol. 8, Iss. 3. Article 408. DOI: https://www.doi.org/10.3390/vaccines8030408.
Rahman N., Ali F., Basharat Z., Shehroz M., Khan M.K., Jeandet P., Nepovimova E., Kuca K., Khan H. Vaccine Design from the Ensemble of Surface Glycoprotein Epitopes of SARS-CoV-2: An Immunoinformatics Approach. Vaccines (Basel), 2020. Vol. 8, Iss. 3. Article 423. DOI: https://www.doi.org/10.3390/vaccines8030423.
Quadeer A.A. Immunodominant epitopes based serological assay for detecting SARS-CoV-2 exposure: Promises and challenges. EBioMedicine, 2020. Vol. 59. Article 102947. DOI: https://www.doi.org/10.1016/j.ebiom.2020.102947.
Bhattacharya M., Sharma A.R., Patra P., Ghosh P., Sharma G., Patra B.Ch., Saha R.P., Lee S.-S., Chakraborty Ch. A SARS-CoV-2 vaccine candidate: In-silico cloning and validation. Informatics in Medicine Unlocked, 2020. Vol. 20. Article 100394. DOI: https://www.doi.org/10.1016/j.imu.2020.100394.
Kumar A., Kumar P., Saumya K.U., Kapuganti S.K., Bhardwaj T., Giri R. Exploring the SARS-CoV-2 structural proteins for Multi-Epitope vaccine development: an in-silico approach. Expert Review of Vaccines, 2020. Vol. 19, No. 9. Pp. 887–898. DOI: https://www.doi.org/10.1080/14760584.2020.1813576.
Banerjee S., Majumder K., Gutierrez G.J., Gupta D., Mittal B. Immuno-informatics approach for multi-epitope vaccine designing against SARS-CoV-2. BioRxiv.org – the preprint server for Biology. Preprint posted August 18, 2020. DOI: https://www.doi.org/10.1101/2020.07.23.218529.
Abraham Peele K., Srihansa T., Krupanidhi S. Ayyagari V.S., Venkateswarulu T.C. Design of multi-epitope vaccine candidate against SARS-CoV-2: a in-silico study. Journal of Biomolecular Structure and Dynamics, 2021. Vol. 39, Iss. 10. Pp. 3793–3801. DOI: https://www.doi.org/10.1080/07391102.2020.1770127.
Case J.B., Rothlauf P.W., Chen R.E., Kafai N.M., Fox J.M., Smith B.K. et al. Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against SARS-CoV-2-Mediated Pathogenesis in Mice. Cell Host & Microbe, 2020. Vol. 28, Iss. 3. Pp. 465–474. DOI: https://www.doi.org/10.1016/j.chom.2020.07.018.
Shirvani E., Samal S.K. Newcastle Disease Virus as a Vaccine Vector for SARS-CoV-2. Pathogens, 2020. Vol. 9, Iss. 8. Article 619. DOI: https://www.doi.org/10.3390/pathogens9080619.
Estrada E. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Physics Reports, 2020. Vol. 869. P. 1–51. DOI: https://www.doi.org/10.1016/j.physrep.2020.07.005.
ul Qamar M.T., Shahid F., Ashfaq U.A., Aslam S., Fatima I., Fareed M.M., Zohaib A., Chen L.-L. Structural modeling and conserved epitopes prediction against SARS-COV-2 structural proteins for vaccine development. ResearchSquare.com – the multidisciplinary preprint. Preprint posted February 19, 2020. DOI: https://www.doi.org/10.21203/rs.2.23973/v1.
El-Awar N., Jucaud V., Nguyen A. HLA Epitopes: The Targets of Monoclonal and Alloantibodies Defined. Journal of Immunology Research, 2017. Vol. 2017. Article 3406230. DOI: https://www.doi.org/10.1155/2017/3406230.
Zhao F., Han Z., Zhang T., Shao Y., Kong X., Ma H., Liu S. Genomic characteristics and changes of avian infectious bronchitis virus strain CK/CH/LDL/97I after serial passages in chicken embryos. Intervirology, 2014. Vol. 57, No. 6. P. 319–330. DOI: https://www.doi.org/10.1159/000365193.
Xiang Z., He Y. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinformatics, 2013. Vol. 14, Suppl. 4. Article S2. DOI: https://www.doi.org/10.1186/1471-2105-14-S4-S2.
Ong E., Wang, H., Wong M.U., Seetharaman M., Valdez N., He Y. Vaxign-ML: supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens. Bioinformatics., 2020. Vol. 36, Iss. 10. Pp. 3185–3191. DOI: https://www.doi.org/10.1093/bioinformatics/btaa119.
Vita R., Mahajan S., Overton J.A., Dhanda S.K., Martini Sh., Cantrell J.R., Wheeler D.K., Sette A., Peters B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 2019. Vol. 47, Iss. D1. Pp. D339–D343. DOI: https://www.doi.org/10.1093/nar/gky1006.
Almofti Y.A., Abd-Elrahman K.A., Eltilib E.E.M. Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Immunology, 2021. Vol. 22. Article 22. DOI: https://www.doi.org/10.1186/s12865-021-00412-0.
Wang Y., Wu W., Negre N.N., White K.P., Li Ch., Shah P.K. Determinants of antigenicity and specificity in immune response for protein sequences. BMC Bioinformatics, 2011. Vol. 12. Article 251. DOI: https://www.doi.org/10.1186/1471-2105-12-251.
Sha T., Li Z., Zhang C., Zhao X., Chen Zh., Zhang F., Ding J. Bioinformatics analysis of candidate proteins Omp2b, P39 and BLS for Brucella multivalent epitope vaccines. Microbial Pathogenesis, 2020. Vol. 147. Article 104318. DOI: https://www.doi.org/10.1016/j.micpath.2020.104318.
Khodadad N., Seyedian S.S., Moattari A., Haghighi S.B., Pirmoradi R., Abbasi S., Makvandi M. In silico functional and structural characterization of hepatitis B virus PreS/S-gene in Iranian patients infected with chronic hepatitis B virus genotype D. Heliyon, 2020. Vol. 6, Iss. 7. Article e04332. DOI: https://www.doi.org/10.1016/j.heliyon.2020.e04332.
Karagoz I.K., Munk M.R., Kaya M., Ruckert R., Yildirim M., Karabas L. Using bioinformatic protein sequence similarity to investigate if SARS CoV-2 infection could cause an ocular autoimmune inflammatory reactions? Experimental Eye Research, 2021. Vol. 203. Article 108433. DOI: https://www.doi.org/10.1016/j.exer.2020.108433.
Ozkan O., Atli O. Transporting COVID-19 testing specimens by routing unmanned aerial vehicles with range and payload constraints: the case of Istanbul. Transportation Letters, 2021. Vol. 13, Iss. 5-6. P. 482–491. DOI: https://www.doi.org/10.1080/19427867.2021.1896063.
Manigandan S., Thaloor Ramesh P.K., Chi N.T.L., Brindhadevi K. Early detection of SARS-CoV-2 without human intervention to combat COVID-19 using drone technology. Aircraft Engineering and Aerospace Technology, 2021. Vol. 93, Iss. 1. P. 85–88. DOI: https://www.doi.org/10.1108/aeat-06-2020-0120.
Kane B., Zajchowski C.A.B., Allen T.R., McLeod G., Allen N.H. Is it safer at the beach? Spatial and temporal analyses of beachgoer behaviors during the COVID-19 pandemic. Ocean & Coastal Management, 2021. Vol. 205. Article 105533. DOI: https://www.doi.org/10.1016/j.ocecoaman.2021.105533.
Published
How to Cite
License
Copyright (c) 2021 Sprindzhuk M.V., Bernik V.I., Betgerel B., Vladyko A.S., Titov L.P., Skrahina A.M., Skryahin A.E., Yatskevich N.V., Konchits A.P., Klimuk D.A., Kalosha N.I., Kudin A.S., Glinskaya T.N., Solodovnikova V.V.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.