Increasing fire safety and fire extinguishing efficiency of an aerosol generator with a modified design
DOI:
https://doi.org/10.33408/2519-237X.2025.9-4.484Keywords:
fire-extinguishing aerosol generator, solid fuel element, fire-extinguishing aerosol, Laval annular nozzle, gas-dynamic cooler, field fire testsAbstract
Purpose. Improving fire safety during operation of a fire-extinguishing aerosol generator (FEAG), which consists of reducing the temperature of the output flow of fire-extinguishing aerosol (FEA) to values that eliminate spontaneous combustion and melting of substances and materials in the protected area, achieved by a structural method of gas-dynamic cooling.
Methods. Literature analysis; comparison of existing results of experimental and theoretical studies on reducing the outlet temperature of the fire extinguishing mixture flow of aerosol generators; comparison of an experimental sample and a serially produced generator during laboratory studies of the temperature fields of the aerosol flow and generator housings and during fire tests.
Findings. A new design method for gas-dynamic cooling of a fire-extinguishing aerosol at the outlet of a FEAG has been developed. This method consists of modifying its design with a profiling insert, made according to the type of an annular Laval nozzle with a cylindrical central body, and ensures effective extinguishing of model fires. Based on a serially produced generator, an experimental model of the FEAG, modified with the specified design gas-dynamic cooler, was manufactured, fire tests of which confirmed a decrease in the temperature of the FEA flow at the exit from the generator by 70–75 % in comparison with the serially produced generator. The time to extinguish a flame fire in a protected area during fire tests was reduced by 2 times.
Application field of research. The FEAG, modified with a gas-dynamic cooler in the form of a profiling insert, made in the style of a Laval annular nozzle with a cylindrical central body, can be effectively used as an operational means of extinguishing non-smoldering substances and materials.
References
Agafonov V.V., Bukhtoyarov D.V., Grishakina V.A., Kazakov A.V., Kopylov S.N., Golubev A.D. Obosnovanie sposobov aerozol'nogo pozharotusheniya v vysotnykh pomeshcheniyakh i sooruzheniyakh [Justification of aerosol fire extinguishing methods in high-rise rooms and structures]. Fire Safety, 2019. No. 4 (97). Pp. 21–31. (rus). EDN: https://elibrary.ru/PYOHDN.
Kopylov S.N., Agafonov V.V., Kopylov N.P. Evolyutsiya sredstv ob"emnogo pozharotusheniya: ot ozonorazrushayushchikh agentov do ognetushashchikh veshchestv s korotkim vremenem zhizni v atmosfere [An evolution of fire suppression tools for total flooding applications: from ozone depleting agents to substances having short period of atmospheric lifetime]. Fire Safety, 2012. No. 2. Pp. 123–130. (rus). EDN: https://elibrary.ru/PIJAOD.
Gatsoev K.G. Problemy aerozol'nogo pozharotusheniya [Problems of aerosol fire extinguishing]. Fire and Explosion Safety, 1999. Vol. 8, No. 4. Pp. 59–61. (rus)
Samboruk A.R. Gazogeneratsiya i aerozoleobrazovanie v sredstvakh pozharotusheniya [Gas generation and aerosol formation in fire extinguishing agents] Vestnik of Samara State Technical University. Technical Sciences Series, 2005. No. 40. Pp. 128–135. (rus). EDN: https://elibrary.ru/IWZIJL.
Agafonov V.V., Kopylov N.P. Ustanovki aerozol'nogo pozharotusheniya. Elementy, kharakteristiki, proektirovanie, montazh i ekspluatatsiya [Aerosol fire extinguishing systems: Components, specifications, design, installation, and operation] Moscow: VNIIPO EMERCOM of Russia, 1999. 236 p. (rus)
Zharkov A.S., Orionov Yu.E., Osipkov V.N. Nizkotemperaturnye gazogeneriruyushchie ustroystva v sredstvakh pozharotusheniya i avariynogo spaseniya [Low-temperature gas-generating devices in fire-fighting and emergency rescue equipment]. Fire Safety, 2001. No. 1. Pp. 181–184. (rus)
Bortnikov R.A., Potapov B.F., Serebrennikov S.Yu. Postanovka zadachi optimizatsii raboty teploobmennika v aerozol'noy sisteme pozharotusheniya [Statement of the problem of optimizing the operation of a heat exchanger in an aerosol fire extinguishing system]. Vestnik Permskogo gosudarstvennogo tekhnicheskogo universiteta, 2004. No. 20. Pp. 8–18. (rus)
Kuznets E.A., Amosov A.P., Samboruk A.A. Aerozoleobrazuyushchie ognetushashchie sostavy, generiruyushchie khloridy shchelochnykh metallov [Aerosol-forming fire extinguishing compositions generating alkali metal chlorides]. Vestnik of Samara State Technical University. Technical Sciences Series, 2005. No. 32. Pp. 210–211. (rus). EDN: https://elibrary.ru/JWUXUP.
Altukhov O.I., Amosov A.P., Kuznets E.A., Samboruk A.A., Frygin V.V. Ustroystvo aerozol'no-poroshkovogo pozharotusheniya [Aerosol-powder fire extinguishing device]. Vestnik of Samara State Technical University. Technical Sciences Series, 2010. No. 2 (27). Pp. 92–100. (rus). EDN: https://elibrary.ru/NCTCVH.
Rasenko A.A., Sedogin A.M., Anokhin K.S., Pyzhov A.M., Rekshinskiy V.A. Razrabotka nizkotemperaturnogo aerozoleobrazuyushchego sostava na osnove aktivnykh ugley [Development of a low-temperature aerosol-forming composition based on active carbons]. Uspekhi v khimii i khimicheskoy tekhnologii, 2007. Vol. 21, No 6 (74). Pp. 104–106. (rus). EDN: https://elibrary.ru/QZMIZN.
Korol'chenko D.A. Novoe pokolenie gazoaerozol'nykh generatorov [New generation of gas-aerosol generators]. Fire and Explosion Safety, 1998. Vol. 7, No. 2. Pp. 71–74. (rus)
Kolomin A.E., Malinin V.I., Serebrennikov S.Yu. Vliyanie osnovnykh parametrov na protsess teploobmena v poroshkoobraznom emkostnom okhladitele [Influence of the main parameters on the heat exchange process in a powder capacitive cooler]. Vestnik IzhGTU imeni M.T. Kalashnikova, 2004. No. 1. Pp. 3–7. (rus)
Bortnikov R.A. Razrabotka nizkotemperaturnykh tverdotoplivnykh gazogeneratorov s inertnymi teploobmennikami [Development of low-temperature solid fuel gas generators with inert heat exchangers]: PhD tech. sci. diss.: 05.07.05. Perm State Technical University. Perm, 2010. 151 p. (rus)
Kozlova E.V., Kartashov Yu.I., Kopylov S.N., Rogozhina O.I. Raschet kharakteristik generatora ognetushashchego aerozolya i formiruemoy im vysokonapornoy strui dlya tusheniya neftyanykh i gazovykh fontanov [Calculation of characteristics of a fire-extinguishing aerosol generator and high-pressure spray for extinguishing oil and gas fountains]. Combustion and Explosion, 2024. Vol. 17, No. 4. Pp. 46–54. (rus). DOI: https://doi.org/10.30826/CE24170405. EDN: https://elibrary.ru/WFFTWS.
Maksimov P.V. Snizhenie pozharnoy opasnosti generatorov ognetushashchego aerozolya s ispol'zovaniem profiliruyushchey vstavki dlya okhlazhdeniya pozharotushashchey smesi [Reducing the fire hazard of fire extinguishing aerosol generators using a profiling insert for cooling the fire extinguishing mixture]. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus', 2015. No. 2 (22). Pp. 44–51. (rus). EDN: https://elibrary.ru/UHHCCL.
Karpenchuk I.V., Aushev I.Yu., Maksimov P.V. Eksperimental'nye issledovaniya generatora ognetushashchego aerozolya s gazodinamicheskim okhladitelem pozharotushashchey smesi dlya obespecheniya pozharnoy bezopasnosti ob"ektov stroitel'stva [Experimental studies of a fire extinguishing aerosol generator with a gas-dynamic cooler of the fire extinguishing mixture to ensure fire safety at construction sites]. Emergency Situations: Prevention and Elimination, 2014. No. 2 (36). Pp. 121–129. (rus). EDN: https://elibrary.ru/WCOMXB.
Tekhnika pozharnaya. Generatory ognetushashchego aerozolya. Obshchie tekhnicheskie trebovaniya. Metody ispytaniy: GOST 34635-2020 [Firefighting equipment. Fire-extinguishing aerosol generators. General technical requirements. Test methods: GOST 34635-2020]. Introduced July 1, 2023. Moscow: Russian Institute of Standardization, 2022. IV, 21 p.
Polevoda I.I., Maksimov P.V., Grachulin A.V., Zuev M.B. Generator ognetushashchego aerozolya s okhladitelem pozharotushashchey smesi [Fire extinguishing aerosol generator with fire extinguishing mixture cooler]: utility model patent BY 10847 U. Published: October 30, 2015. Patent holder: Institute for Command Engineers of the MES of the Republic of Belarus. URL: https://search.ncip.by/database/index.php?pref=mod&lng=ru&page=3&target=12272 (accessed: February 5, 2025).
Published
How to Cite
License
Copyright (c) 2025 Maksimov P.V.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.














