The use of waterjet cutting in emergency response

Authors

  • Dmitriy V. Vasilevich State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0003-1976-0344
  • Sergey N. Gus'kov State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0009-0001-1131-1950

DOI:

https://doi.org/10.33408/2519-237X.2025.9-4.493

Keywords:

waterjet cutting, abrasive material, waterjet cutting machine

Abstract

Purpose. Study of the main parameters of the waterjet cutting process that affect its efficiency.

Methods. The work uses empirical research methods (determination of the sizes and characteristic shapes of abrasive material particles), a method of theoretical analysis of literary sources in determining the main parameters of the waterjet cutting process that affect its efficiency.

Findings. Conceptual approaches to improving the efficiency of waterjet cutting by varying process parameters (water pressure, nozzle diameter, thickness and nature of the workpiece, density, hardness, fraction, and flow rate of the abrasive material) are identified. An analysis of the types and parameters of abrasive material used in waterjet cutting is conducted.

Application field of research. The obtained results can be used to improve the efficiency of waterjet cutting (for fire extinguishing and industrial applications) and sandblasting systems.

Author Biographies

Dmitriy V. Vasilevich, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Fire Rescue Equipment, Senior Lecturer

Sergey N. Gus'kov, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Fire Rescue Equipment, Lecturer

References

Karpachenko K.A. Gidroabrazivnaya rezka: printsip raboty, oblast' primeneniya i preimushchestva tekhnologii [Waterjet cutting: principle of operation, scope and advantages of technology]. Innovative Technologies in Machine-Building, Education and the Economy, 2020. Vol. 28, No. 3 (17). Pp. 100–105. (rus). EDN: https://elibrary.ru/VDUVZX.

Shpilev V.V. Modelirovanie dvukhkomponentnoy strui zhidkosti pri gidroabrazivnoy rezke [Modeling of a two-component fluid jet in waterjet cutting]. Proc. of Intern. (correspondence) scientific-practical conf. «Sovremennye nauchnye issledovaniya: teoriya i praktika», Sofia, Bulgaria, Oktober 21, 2017. Neftekamsk: Mir nauki, 2017. Pp. 122–128. (rus). EDN: https://elibrary.ru/XWITNC.

Ivanov Yu.G., Yakovitskaya M.V. Vybor optimal'noy skorosti rezki dlya raskroya plity D16 tolshchinoy 120 mm pri pomoshchi gidroabrazivnoy rezki [Selection of the optimal cutting speed for cutting D16 plate with a thickness of 120 mm using waterjet cutting]. Proc. of Scientific conference with international participation «Nedelya nauki SPbPU», Saint Petersburg, November 13–19, 2017. Saint Petersburg: Peter the Great St. Petersburg Polytechnic University, 2017. Part 2. Pp. 226–228. (rus). EDN: https://elibrary.ru/XLKSXT.

Astakhov Yu.P., Korolev A.N., Zhikharev M.B., Volkov S.M. Ustanovka gidroabrazivnoy rezki [Waterjet cutting installation]. Patent RU 2508189 C1. Published on February 27, 2014. Patent holder: Scientific and Production Association «Tekhnomash». (rus). EDN: https://elibrary.ru/ZFMHHV.

Garagulya D.V. Preimushchestva gidroabrazivnoy rezki pri raskroe listovogo metalla [Advantages of waterjet cutting when cutting sheet metal]. Morskoy Vestnik, 2017. No. 4 (64). Pp. 37–38. (rus). EDN: https://elibrary.ru/ZUQMKL.

Aleshkov M.V., Gusev I.A. Opredelenie rabochikh parametrov ustanovok pozharotusheniya s vozmozhnostyami gidroabrazivnoy rezki, primenyaemykh na ob"ektakh energetiki [Determination of working parameters of the installations of fire extinguishing with opportunities of hydroabrasive cutting applied on power objects]. Fire and Explosion Safety, 2017. Vol. 26, No. 10. Pp. 69–76. (rus). DOI: https://doi.org/10.18322/PVB.2017.26.10.69-76. EDN: https://elibrary.ru/ZUFYCN.

Tamarkin M.A., Tishchenko E.E., Verchenko A.V., Kokhanyuk A.G. Tekhnologicheskie osobennosti gidroabrazivnoy rezki listovykh kompozitsionnykh materialov [Technological features of waterjet cutting of sheet composite materials]. Aerokosmicheskaya tekhnika, vysokie tekhnologii i innovatsii, 2019. Vol. 2. Pp. 191–194. (rus). EDN: https://elibrary.ru/ZULBMO.

Nikolaev P.A. Kompleksnyy analiz protsessa gidroabrazivnoy rezki [Comprehensive analysis of the waterjet cutting process]. Proc. of the XLV Scientific and educational-methodological conference of ITMO University «Almanac of scientific works of young scientists of ITMO University»: in 5 vol., St. Petersburg, February 2–6, 2016. St. Petersburg: Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 2016. Vol. 4. Pp. 48–50. (rus). EDN: https://elibrary.ru/ZOPAOB.

Vavilov D.V. Gidroabrazivnaya rezka metalla [Waterjet cutting of metal]. Proc. of Intern. scientific-technical conference of young scientists of the BSTU named after V.G. Shukhov, Belgorod, May 1–30, 2015. Belgorod: Belgorod State Technological University named after V.G. Shukhov, 2015. Pp. 1255–1257. (rus). EDN: https://elibrary.ru/USQGJF.

Putz M., Dix M., Morczinek F., Dittrich M. Suspension technology for abrasive waterjet (AWJ) cutting of ceramics. Procedia CIRP, 2018. Vol. 77. Pp. 367–370. DOI: https://doi.org/10.1016/j.procir.2018.09.037.

Karmiris-Obratański P., Karkalos N.E., Kudelski R., Papazoglou E.L., Markopoulos A.P. Experimental study on the correlation of cutting head vibrations and kerf characteristics during abrasive waterjet cutting of titanium alloy. Procedia CIRP, 2021. Vol. 101. Pp. 226–229. DOI: https://doi.org/10.1016/j.procir.2020.11.011.

Dadgar M., Schreiner T., Schuler M., Herrig T., Bergs T. Reduction of taper angle and jet trailback in waterjet cutting of complex geometries by a revised model of the process control. Procedia CIRP, 2023. Vol. 117. Pp. 20–25. DOI: https://doi.org/10.1016/j.procir.2023.03.005.

Vasilevich D.V., Lakhvich V.V., Mikanovich D.S. Perspektivnye sredstva tusheniya pozharov s primeneniem ustanovok podachi ognetushashchikh veshchestv vysokogo davleniya [Promising means of fire extinguishing agents using high-pressure installations]. Journal of Civil Protection, 2019. Vol. 3, No. 3. Pp. 283–290. (rus). DOI: https://doi.org/10.33408/2519-237X.2019.3-3.283. EDN: https://elibrary.ru/YNKICX.

Dobrovol'skiy I.V., Lyakh M.M. Vybor optimal'nykh rezhimov gidroabrazivnogo rezanii metalla [Selection of optimal modes for waterjet metal cutting]. Ekspozitsiya Neft' Gaz, 2016. No. 4 (50). Pp. 58–60. (rus). EDN: https://elibrary.ru/VXCMVP.

Downloads


Abstract views: 46
PDF Downloads: 19

Published

2025-11-25

How to Cite

Vasilevich Д. В. and Gus’kov С. Н. (2025) “The use of waterjet cutting in emergency response”, Journal of Civil Protection, 9(4), pp. 493–505. doi: 10.33408/2519-237X.2025.9-4.493.

Issue

Section

Emergency rescue techniques, equipment and outfit. Training equipment

Categories