Behavior of centrifuged concrete in case of fire

Authors

  • Ivan I. Polevoda State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus
  • Denis S. Nekhan' State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus
  • Dmitriy S. Batan Open Joint Stock Company «Svetlogorsk Plant of Concrete Products and Structures»; ul. Miroshnichenko, 25, Svetlogorsk, 247400, Belarus

DOI:

https://doi.org/10.33408/2519-237X.2018.2-4.455

Keywords:

strength, fire resistance, high-temperature heating, coefficient of concrete working conditions in case of fire, centrifuged concrete, anisotropy (heterogeneity), relative thickness, strength reduction factor

Abstract

Purpose. The article is devoted to the change in the strength of centrifuged concrete during heating.

Methods. Strength test of centrifuged concrete samples after high temperature heating.

Findings. The results of experimental and theoretical studies of the resistance of centrifuged concrete to high temperatures are presented. Empirical dependences of kс(θ) of centrifuged concrete were obtained. The values of the correction factor for estimating the kс(θ) of centrifuged concrete were obtained.

Application field of research. The results of the study can be used to determine the residual strength of concrete in structures made by centrifuging under high-temperature heating (in the event of a fire), as well as during engineering assessment of kс(θ) under current regulations.

Conclusions. The changes in the physical and mechanical properties of centrifuged concrete in a fire have been generalized, which are recommended to take into account by the corresponding coefficients of concrete working conditions at a fire. The dependence of the strength characteristics of centrifuged concrete on the location in the structure was determined experimentally and theoretically confirmed. Nomograms have been obtained that make it possible to determine the value of kc for heavy concrete at any point in a centrifuged reinforced concrete structure at temperatures up to 800°C. Based on the experimental data, the coefficient kс(θ) of centrifuged concrete for the first time is mathematically described as a function of temperature θ, the relative thickness of the structure δ, and the rate of change of kс(θ) over the cross-section tanφ. At the same time, to estimate kс(θ), empirical coefficients were obtained, characterizing the intensity of destructive processes, associated with an increase in temperature and non-homogeneity in the cross section. The values of the correction factor kcor for assessing the coefficient of working conditions of centrifuged concrete in case of fire under the current technical regulatory legal acts are obtained.

Author Biographies

Ivan I. Polevoda, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

Head of University; PhD in Technical Sciences, Associate Professor

Denis S. Nekhan', State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

Cadet

Dmitriy S. Batan, Open Joint Stock Company «Svetlogorsk Plant of Concrete Products and Structures»; ul. Miroshnichenko, 25, Svetlogorsk, 247400, Belarus

Senior Engineer

References

Neverovich I.I. Zhelezobetonnye konstruktsiy: kurs lektsiy dlya slushateley perepodgotovki po spetsial'nosti 1-70 02 71 «Promyshlennoe i grazhdanskoe stroitel'stvo» [Reinforced concrete structures: a course of lectures for students of retraining in the specialty 1-70 02 71 «Industrial and civil construction»]. Minsk: Belarusian National Technical University, 2013. 211 p. (rus)

Ivanov V.P. Issledovanie i razrabotka tekhnologii montazha karkasov promyshlennykh zdaniy s primeneniem tsentrifugirovannykh kolonn kol'tsevogo secheniya [Research and development of the technology of mounting the frameworks of industrial buildings with the use of centrifugal columns of annular cross-section]. PhD tech. sci. diss. Synopsis: 05.23.08. Belarusian Order of Labor Red Banner Polytechnic Institute. Minsk, 1984. 24 p. (rus)

Shilov A.E. Zhelezobetonnye tsentrifugirovannye dvukhvetvevye kolonny odnoetazhnykh proiz-vodstvennykh zdaniy [Reinforced concrete centrifuged two-branch columns of one-storey industrial buildings]. PhD tech. sci. diss. Synopsis: 05.23.08. Belorussian State Polytechnic Academy. Minsk, 1994. 31 p. (rus)

Informationen rund um Schleuderbeton [Information about spun concrete], available at: http://schleuderbeton.de/vorteile.htm (accessed: July 30, 2018). (deu)

Proektirovanie zhelezobetonnykh konstruktsiy. Chast' 1-2. Obshchie pravila opredeleniya ognestoykosti: ТКП EN 1992-1-2-2009. Evrokod 2 [Design of reinforced concrete structures. Part 1-2. General rules for determining fire resistance: Technical Code of Practice EN 1992-1-2-2009. Eurocode 2]. Affirmed January 01, 2010. Minsk: Ministry of Architecture and Construction of the Republic of Belarus, 2010. 96 p. (rus)

Stroitel'nye konstruktsii. Poryadok rascheta predelov ognestoykosti: TKP 45-2.02-110-2008 [Building construction. The procedure for calculating fire resistance: Technical Code of Practice 45-2.02-110-2008]. Affirmed January 01, 2009. Minsk: Ministry of Architecture and Construction of the Republic of Belarus, 2008. 135 p.(rus)

Standart organizatsii. Pravila po obespecheniyu ognestoykosti i ognesokhrannosti zhelezobetonnykh konstruktsiy: STO 36554501-006-2006 [Standard of organization. Rules for ensuring fire resistance and fire safety of reinforced concrete structures: Standard of organization 36554501-006-2006]. Affirmed November 01, 2006. Moscow: Research Center «Stroitel'stvo», 2006. 79 p. (rus)

Leonovich S.N., Zikeev L.N. Dolgovechnost' tsentrifugirovannykh zhelezobetonnykh stoek [Durability of centrifuged reinforced concrete racks]: overview information. Moscow: Informenergo, 1991. 64 p. (rus)

Betony. Metody opredeleniya prochnosti po kontrol'nym obraztsam: GOST 10180-2012 [Concretes. Methods for determining the strength of control samples: State standard 10180-2012]. Affirmed July 1, 2013. Moscow: Standardinform, 2013. 36 p. (rus)

Gosudarstvennaya sistema obespecheniya edinstva izmereniy (GSI). Izmereniya pryamye mnogokratnye. Metody obrabotki rezul'tatov izmereniy. Osnovnye polozheniya: GOST R 8.736–2011 [State system for ensuring the uniformity of measurements (ICG). Direct measurements are multiple. Methods for processing the results of measurements. Basic provisions: State standard of Russia 8.736–2011]. Affirmed January 1, 2013. – Moscow: Standardinform, 2013. 40 p. (rus)

Milovanov A.F. Stoykost' zhelezobetonnykh konstruktsiy pri pozhare [Resistance of reinforced concrete structures in case of fire]. Moscow: Stroyizdat, 1998. 304 p. (rus)

Jakovlev A.I. Raschet ognestoykosti stroitel'nykh konstruktsiy [Calculation of fire resistance of building structures]. Moscow: Stroyizdat, 1988. 143 p. (rus)

Roytman V.M. Inzhenernye resheniya po otsenke ognestoykosti proektiruemykh i rekonstruiruemykh zdaniy [Engineering solutions for assessing the fire resistance of designed and reconstructed buildings]. Moscow: Association «Pozharnaya bezopasnost' i nauka», 2001. 382 p. (rus)

Betonnye i zhelezobetonnye konstruktsii: SNB 5.03.01-02 [Concrete and reinforced concrete structures: Building standards of Belarus 5.03.01-02]. Affirmed July 1, 2003. Minsk: Minsktipproekt, 2003. 140 p. (rus)

Zhukov V.V. Osnovy stoykosti betona pri deystvii povyshennykh temperatur [Fundamentals of the resistance of concrete under the influence of elevated temperatures]. Grand PhD tech. sci. diss. Synopsis: 05.23.05. Research, Design and Technological Institute of Concrete and Reinforced Concrete. Moscow, 1982. 48 p. (rus)

Kusterle W., Lindbauer W., Hampejs G., Heel A. Brandbeständigkeit von Faser-, Stahl- und Spannbeton [Fire resistance of fiber, steel and prestressed concrete]. Wien: Stubenring, 1992. 221 p. (deu)

Polevoda I.I. Ognestoykost' izgibaemykh zhelezobetonnykh konstruktsiy iz vysokoprochnogo betona [Fire resistance of bent reinforced concrete structures made of high-strength concrete]. PhD techn. sci. diss: 05.23.01. Minsk, 2004. 124 p. (rus)

Hermann K. Brandverhalten von Beton [Fire behavior of concrete]. Cement Bulletin, 1992. No. 10. Pp. 1-8. (deu)

Jungbluth O., Berner K. Verbund- und Sandwichtragwerke: Tragverhalten, Feuerwiderstand, Bauphysik [Composite and Sandwich objects: structural behavior, fire resistance, building physics]. Berlin; Heidelberg; New York; Tokyo: Springer, 1986. 560 p. (deu)

Shchutskiy V.L., Dedukh D.A., Gritsenko M.Yu. Issledovanie fiziko-mekhanicheskikh svoystv tsentrifugirovannogo betona [Investigation of physicomechanical properties of centrifuged concrete]. Inzhenernyy vestnik Dona (electronic. sci. journal), 2015. No. 2, Part 2. 13 p., available at: http://www.ivdon.ru/uploads/article/pdf/IVD_81_Shucki.pdf_4abcf9232c.pdf (accessed: July 30, 2018). (rus)

Kudzis A.P. Zhelezobetonnye i kamennye konstruktsii. Konstruktsii promyshlennykh i grazhdanskikh zdaniy i sooruzheniy [Reinforced concrete and stone structures. Structures of industrial and civil buildings and structures]: textbook in 2 parts. Moscow: High school, 1989. Part 2. 264 p. (rus)

Downloads


Abstract views: 360
PDF Downloads: 206

Published

2018-11-27

How to Cite

Polevoda И., Nekhan’ Д. С. and Batan Д. (2018) “Behavior of centrifuged concrete in case of fire”, Journal of Civil Protection, 2(4), pp. 455–469. doi: 10.33408/2519-237X.2018.2-4.455.

Most read articles by the same author(s)

1 2 > >>