Experimental check of gaseous dangerous chemicals sedimentation models by means rainfall

Authors

  • Maksim V. Kustov National University of Civil Protection of Ukraine; ul. Chernyshevskogo, 94, Kharkiv, 61023, Ukraine
  • Vitaliy N. Ryabtsev State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

DOI:

https://doi.org/10.33408/2519-237X.2017.1-1.80

Keywords:

mass exchange, absorption, burning products, experimental appliance, similarity criteria, theoretical models

Abstract

Purpose. The paper is devoted to the experimental study of dynamics of gases sedimentation from the atmosphere by water aerosols.

Methods. Using the developed laboratory experimental appliance of mass-exchanged type it was carried out ammonia sedimentation by various dispersion water aerosols.

Findings. The developed experimental appliance allows investigating the gases, vapors, dust and products of burning sedimentation speed by various dispersion, chemical composition and intensity of giving liquid aerosols. The comparative analysis of existent theoretical models of mass exchange process with obtained experimental data has been carried out based on the example of ammonia sorption.

Application field of research. The obtained experimental data can be used for checking the adequacy of existing and new theoretical models.

Conclusions. The assessment of adequacy of the main theoretical methods of gases sedimentation processes modeling is carried out. The main positive and negative qualities of these models are revealed.

Author Biographies

Maksim V. Kustov, National University of Civil Protection of Ukraine; ul. Chernyshevskogo, 94, Kharkiv, 61023, Ukraine

PhD in Technical Sciences, Associate Professor

Vitaliy N. Ryabtsev, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

Chair of Automatic System Security, Senior Lecturer

References

Derzhavni sanitarni pravyla ohorony atmosfernogo povitrja naselenyh misc' (vid zabrudnennja himichnymy ta biologichnymy rechovynamy) [State sanitary rules of protection of atmospheric air of settlements (from pollution by chemical and biological substances] DSP 201-97. Affirmed 09.07.1997. The order of the Ministry of health of Ukraine. No. 201. 43 p. (ukr)

Okhrana prirody. Atmosfera. Pravila kontrolya kachestva vozdukha naselennykh punktov [Conservation. Atmosphere. Rules of quality control of air of settlements]. GOST 17.2.3.01-86. Affirmed 01.01.1987. The resolution of the State committee USSR on standards 10.10.1986. No 3359. 4 p. (rus)

Okhrana prirody. Atmosfera. Pravila ustanovleniya dopustimykh vybrosov. Vrednykh veshchestv promyshlennymi predpriyatiyami [Conservation. Atmosphere. Rules of establishing permissible emissions. Harmful substances from industry]. GOST 17.2.3.02-78. Affirmed 01.01.1980. The resolution of the State committee USSR on standards 24.08.1978. No 2329. 15 p. (rus)

Atmosfernyy vozdukh i vozdukh zakrytykh pomeshcheniy, sanitarnaya okhrana vozdukha [Atmospheric air and air of the enclosed space, sanitary protection of air]. SanPiN 2.1.6.575-96. Affirmed 11.01.1996. The resolution of the State Committee on Sanitary and Epidemiology Surveillance of Russia of 31.11.1996. No 48. 21 p. (rus)

The National Ambient Air Quality Standard (NAAQS). The U.S. Environmental Protection Agency (EPA), 14.12.2012. 43 p.

Stan dovkillja v Ukrai'ni. Informacijno-analitychnyj ogljad [The state of environment in Ukraine. Information and analytical review], available at http://www.ecobank.org.ua/ /EnvironmentState/Reviews/Pages/default.aspx (accessed : April 10, 2016). (ukr)

Advancing the Science of Climate Change, available at http://dels.nas.edu/resources/static-assets/materials-based-on-reports/reports-in-brief/Science-Report-Brief-final.pdf (accessed : April 10, 2016).

Zaikov G.E., Maslov S.A., Rubajlo V.L. Kislotnye dozhdi i okruzhayushchaya sreda [Acid rains and environment]. Moscow, Khimiya, 1991. 144 p. (rus)

Isidorov V.A. Organicheskaya khimiya atmosfery [Organic chemistry of the atmosphere]. SPb., Khimizdat, 2001. 352 p. (rus)

Larin I.K. Khimiya nochnoy troposfery. І. Protsessy s uchastiem okislov azota [Chemistry of the night troposphere. І. Processes with participation of nitrogen]. Ekologicheskaya khimiya. Moscow, 2011. No. 20 (3). Pp. 155-162. (rus)

Atkinson R. Gas-phase tropospheric chemistry of organic compounds: a review. Atmospheric Environment. 2007. No. 41. Pp. 200-240.

Aloyan A.E. Dinamika i kinetika gazovykh primesey i aerozoley v atmosfere [Dynamics and kinetics of gas impurity and aerosols in the atmosphere]. Moscow. IVM RAN, 2002. 201 p. (rus)

Kustov M.V. Khimicheski opasnye vybrosy v atmosferu pri tekhnogennykh avariyakh na predpriyatiyakh Ukrainy [Chemically hazardous emissions in the atmosphere at technogenic accidents at the enterprises of Ukraine]. Bezopasnost' v tekhnosfere. Moscow, 2015. No. 3. Pp. 16-21. (rus)

Ramm V.M. Absorbtsiya gazov [Absorption of gases]. Moscow, Khimiya. 1976. 656 p. (rus)

Mchedlov-Petrosjan M.O., Lebid' V.I., Glazkova O.M. Koloi'dna himija [Colloid and surface chemistry]. Harkiv: Folio, 2005. 301 p. (ukr)

Shiraiwa M., Pfrang C., Koop T., Pöschl U. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmos. Chem. Phys, 2012. No. 12. Рp. 2777-2794.

Tsuruta T., Nagayama G. Molecular Dynamics Studies on the Condensation Coefficient of Water. J. Phys. Chem. B. 2004. No. 108 (5). Рp. 1736-1743.

Gilde A., Siladke N, Lawrence C.P. Molecular Dynamics Simulations of Water Transport through Butanol Films. J. Phys. Chem. A., 2009. No. 113 (30). Рp. 8586-8590.

Schwartz S.E. Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds. NATO ASI Ser. Springer-Verlag, New York, 1986. Рp. 415-471.

Kustov M.V., Kalugin V.D. Prognozirovanie intensivnosti osazhdeniya gazoobraznykh toksichnykh khimicheskikh veshchestv atmosfernymi osadkami [Forecasting of intensity of sedimentation of gaseous toxic chemicals atmospheric precipitation]. East European Scientific Journal, Warsaw, 2016. No. 2 (6). Pp. 52-58. (rus)

Li Y.Q., Davidovits P., Shi Q., Jayne J.T. Mass and Thermal Accommodation Coefficients of water (g) on Liquid Water as a Function of Temperature. J. Phys. Chem. A, 2001. No. 105 (47). Pp. 10627-10634.

Winkler P.M., Vrtala A., Wagner P.E., Kulmala M. Mass and Thermal Accommodation during Gas-Liquid Condensation of Water. Phys. Rev. Lett., 2004. No. 93. Рp. 075701-075723.

Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, available at http://www.henrys-law.org/henry-3.0.pdf (accessed : April 10, 2016).

Demikhov S.V. Pryamotochnyy absorber [Direct-flow absorber]. Patent No. 2 491 982, Russian Federation, B01D53/18. Patentoobladatel' Demikhov S.V. (RU). No. 2012112680/05; zayavl. 03.04.2012. Publ. 10.09.2013. (rus)

Julin J., Shiraiwa M., Miles R., Reid J.P., Pöschl U., Riipinen I. Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models. J. Phys. Chem. A., 2013. No. 117. Pp. 410-420.

Downloads


Abstract views: 196
PDF Downloads: 89

Published

2017-02-17

How to Cite

Kustov М. and Ryabtsev В. (2017) “Experimental check of gaseous dangerous chemicals sedimentation models by means rainfall”, Journal of Civil Protection, 1(1), pp. 80–86. doi: 10.33408/2519-237X.2017.1-1.80.