Sensor of high frequency electric fields intensity on the base of slot waveguides with electro-optic polymer filling
DOI:
https://doi.org/10.33408/2519-237X.2020.4-4.378Keywords:
ring microresonator, slot waveguide, optical sensor, electro-optical polymer, effective index, electric field intensityAbstract
Purpose. Development of the structure and operation principles of high frequency electric fields intensity optical sensor.
Methods. Method of lines was used for calculation of propagation constants and mode electric fields distribution of strip waveguides with vertical and horizontal slots filled with electro-optical polymer SEO125.
Findings. The structure and operation principles of high frequency electric fields intensity sensor on the base of slot waveguides with vertical and horizontal slots filled with electro-optical polymer are proposed. Sensor makes it possible measuring the variable electric fields with frequencies up to 10 MHz. The sensor sensitivity order is of 30 V/m.
Application field of research. Determination of fire-dangerous and injurious factors of electric field during emergencies elimination.
References
Passaro V.M.N., Dell’Olio F., Leonardis F. De. Electromagnetic field photonic sensors. Progress in Quantum Electronics, 2006. Vol. 30, Iss. 2–3. P. 45–73. DOI: https://www.doi.org/10.1016/j.pquantelec.2006.08.001.
Tajima K., Kobayashi R., Kuwabara N., Tokuda M. Development of optical isotropic E-field sensor operating more than 10GHz using Mach-Zehnder interferometers. IEICE Trans. Electron, 2002. Vol. 85, Iss. 4. P. 961–968.
Goncharenko I., Marciniak M., Reabtsev V. Electric field sensing with liquid-crystal-filled slot waveguide microring resonators. Applied Optics, 2017. Vol. 56, Iss. 27. P. 7629–7635. DOI: https://www.doi.org/10.1364/AO.56.007629.
Rabiei P., Steier W.H., Zhang Cheng, Dalton L.R. Polymer micro-ring filters and modulator. J. Lightwave Technology, 2002. Vol. 20, Iss. 11. P. 1968–1974. DOI: https://www.doi.org/10.1109/JLT.2002.803058.
Almeida V.R., Xu Q., Barrios C.A., Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004. Vol. 29, Iss. 11. P. 1209–1211. DOI: https://www.doi.org/10.1364/OL.29.001209.
Passaro V.M.N., Dell’Olio F., Casamassima B., Leonardis F. De. Guided-wave optical biosensors. Sensors, 2007. Vol. 7. P. 508–536. DOI: https://www.doi.org/10.3390/s7040508.
Cheng N.C., Ma Y. F., Fu P. H., Chin C. C., Huang D.W. Horizontal slot waveguides for polarization branching control. Applied Optics, 2015. Vol. 54, Iss. 3. P. 436–443. DOI: https://www.doi.org/10.1364/AO.54.000436.
Viphavakit C., Komodromos M., Themistos C., Mohammed W. S., Kalli K., Rahman B. M. A. Optimization of a horizontal slot waveguide biosensor to detect DNA hybridization. Applied Optics, 2015. Vol. 54, iss. 15. P. 4881–4888. DOI: https://www.doi.org/10.1364/AO.54.004881.
Zhang X., Hosseini A., Subbaraman H., Wang S., Zhan Q., Luo J., Jen A. K.-Y., Chen R. T. Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator. J. Lightwave Technology, 2014. Vol. 32, Iss. 20. P. 3774–3784. DOI: https://www.doi.org/10.1109/JLT.2014.2319152.
Ibrahim T.A., Cao W., Kim Y., Li J., Goldhar J., Ho P.-T., Lee C.H. Lightwave switching in semiconductor microring devices by free carrier injection. J. Lightwave Technol, 2003. Vol. 21, Iss. 12. P. 2997–3003. DOI: https://www.doi.org/10.1109/JLT.2003.819800.
Shenoy M.R., Sharma M., Sinha A. An electrically-controlled nematic liquid crystal core waveguide with a low switching threshold. J. Lightwave Technology, 2015. Vol. 33, Iss. 10. P. 1948–1953. DOI: https://www.doi.org/10.1109/JLT.2015.2404337.
Lin Che-Yun., Wang Alan X., Lee Beom Suk, Zhang Xingyu, Chen Ray T. High dynamic range electric field sensor for electromagnetic pulse detection. Optics Express, 2011. Vol. 19, Iss. 18. P.17372–17377. DOI: https://www.doi.org/10.1364/OE.19.017372.
Pregla R. The method of lines for the analysis of dielectric waveguide bends. J. Lightwave Technology, 1996. Vol. 14, Iss.4. P. 634–639. DOI: https://www.doi.org/10.1109/50.491403.
Goncharenko I.A., Ryabtsev V.N. Metod rascheta izognutykh mikrostrukturirovannykh volnovodov s neskol'kimi serdtsevinami [Method for calculating bent microstructured multi-core waveguidesand]. Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2015. No. 4. Pp. 87–95. (rus)
Published
How to Cite
License
Copyright (c) 2020 Goncharenko I.A., Ryabtsev V.N., Il'yushonok A.V., Navrotskiy O.D.CC «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0