Experimental investigations of strength and deformation properties of polymeric materials considered as a translucent filling of easy-to-reset structures
DOI:
https://doi.org/10.33408/2519-237X.2023.7-1.32Keywords:
easy-to-reset structures, physical and mechanical properties, deformation, bending, tension, experimental researchAbstract
Purpose. By means of experimental studies to determine the physical and mechanical properties of polymeric materials that affect the process of opening easily ejected structures.
Methods. Experimental research, comparative analysis methods.
Findings. Experimental studies were carried out to determine the physical and mechanical properties of polymeric materials. Based on the results of experimental studies, the data were obtained on the strength and deformation properties of polymeric materials (modulus of elasticity and ultimate tensile strength; modulus of elasticity and ultimate strength in bending; Poisson's ratio; shear modulus). It has been established that the diagram of tension and bending of plexiglass is characteristic for a brittle material that breaks down without yielding at low relative elongations. The tensile and bending diagram of monolithic polycarbonate has a form typical for a material subject to ductile fracture.
Application field of research. The results obtained can be used in the development of the design of an easily ejected window unit or aeration lantern of a building using polymers as a translucent filling.
References
Dust explosion venting protective systems: EN Standard 14491 vs. VDI Guideline 3673. Norma Europea: UNI EN 14491. Available at: https://www.mvtplant.com/wp-content/uploads/2015/01/UNI-EN-14491_2012-Sistemi-di-protezione-sfogo-esplosione-polveri.pdf (accessed: 05.03.2022).
Guide for Venting of Deflagrations: NFPA 68: 2002 Edition. Quincy, Massachusetts: National Fire Protection Association, 2002. 66 p. Available at: http://www.hysafe.org/img/NFPA68_2002.pdf (accessed: 05.03.2022).
Modelirovanie pozharov i vzryvov [Modeling of fires and explosions] under total ed. N.N. Brushlinskiy, A.Ya. Korol'chenko. Moscow: Pozhnauka, 2000. 482 p. (rus)
Pilyugin L.P. Konstruktsii sooruzheniy vzryvoopasnykh proizvodstv (teoreticheskie osnovy proektirovaniya) [Structures of explosive industries: (theoretical foundations of design)]. Moscow: Stroyizdat, 1988. 316 p. (rus)
Penyaz’kov О.G., Shabunya S.I., Usov А.M., Tereshenkov V.I., Mikanovich A.S. Opredelenie izbytochnogo davleniya vskrytiya okonnykh blokov pri deflagratsionnom vzryve v zamknutom ob"eme [Determination of excessive pressure of opening window blocks during a deflagration explosion in a closed volume]. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus', 2007. No. 1 (5). Pp. 65–74. (rus). EDN: https://elibrary.ru/SMTLBN.
Bunto O.V., Mikanovich A.S. Analiz voprosa zashchity zdaniy i sooruzheniy pri vnutrennem vzryve gazo-pylevozdushnoy smesi [Analysis of buildings protection from the impact of internal explosion of the gas- dust- air mixture]. Emergency situations: prevention and elimination, 2022. No. 1 (51). Pp. 31−40. (rus). DOI: https://doi.org/10.54422/1994-439X.2022.1-51.31-39. EDN: https://elibrary.ru/SHPVWZ.
Bunto O.V., Mikanovich A.S, Zhamoydik S.M. Analiz sushchestvuyushchikh trebovaniy, pred"yavlyaemykh k svetoprozrachnomu zapolneniyu okonnykh blokov legkosbrasyvaemykh konstruktsiy v chasti soprotivleniya teploperedache, svetopropusknoy sposobnosti [Analysis of existing requirements for a translucent filling of window blocks of explosion relief structures in part of resistance to heat transfer, light transmission]. Emergency situations: prevention and elimination, 2022. No. 1 (51). Pp. 48−58. (rus). DOI: https://doi.org/10.54422/1994-439X.2022.1-51.48-57. EDN: https://elibrary.ru/DJEBCG.
Polikarbonat [Polycarbonate]. In Barvinskiy I.A. Lit'e plastmass [Plastic molding]: guide of thermoplastics for injection molding. Available at: http://www.barvinsky.ru/guide/guide-materials_PC.htm (accessed: March 05, 2022). (rus)
Babichev A.P., Babushkina N.A., Bratkovskiy A.M. et al. Fizicheskie velichiny [Physical quantities]: handbook. Ed. by I.S. Grigor'ev, E.Z. Meylikhov. Moscow: Energoatomizdat, 1991. 1232 p. (rus)
Polimetilmetakrilat, sopolimery metilmetakrilata [Polymethyl methacrylate, methyl methacrylate copolymers]. In Barvinskiy I.A. Lit'e plastmass [Plastic molding]: guide of thermoplastics for injection molding. Available at: http://www.barvinsky.ru/guide/guide-materials_PMMA.htm (accessed: March 05, 2022). (rus)
Orgsteklo: teplovye i mekhanicheskie kharakteristiki [Plexiglas: thermal and mechanical characteristics]. Thermalinfo.ru – a guide to the properties of substances and materials: density, thermal conductivity, heat capacity, viscosity, and other physical properties of substances in tables depending on temperature and pressure. Available at: http://thermalinfo.ru/svojstva-materialov/plastmassa-i-plastik/orgsteklo-teplovye-i-mehanicheskie-harakteristiki (accessed: March 05, 2022). (rus)
Katsnel'son M.Yu., Balaev G.A. Plasticheskie massy. Svoystva i primenenie [Plastic masses. Properties and application]: handbook. 3-ed. Leningrad: Khimiya, 1978. 384 p. (rus)
Polikarbonat [Polycarbonate]. Mashinostroitel'noe proektirovanie: proektno-informatsionnyy portal alexfl.pro [Engineering design: design and information portal alexfl.pro]. Available at: https://alexfl.pro/katalog/katalog_polikarbon.html (accessed: March 05, 2022) (rus)
Kryzhanovskiy V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya Yu.V. Tekhnicheskie svoystva polimernykh materialov [Technical properties of polymeric materials]: tutorial. St. Petersburg: Professiya, 2007. 240 p. (rus)
Published
How to Cite
License
Copyright (c) 2023 Bunto O.V., Zhamoydik S.M.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.