Methods of experimental determination of compression foam flow regimes

Authors

  • Kirill E. Shinkorenko State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0003-4946-9339
  • Aleksandr V. Grachulin State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0003-3832-8258
  • Vitaliy N. Ryabtsev State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0002-2830-591X

DOI:

https://doi.org/10.33408/2519-237X.2023.7-2.188

Keywords:

automatic fire extinguishing installation, hydraulic calculation, pipeline, gas-liquid mixture, two-phase flow, pressure, consumption

Abstract

Purpose. To analyze the methods for determining the flow regimes of gas-liquid mixtures in a cylindrical channel. On the basis of the analysis carried out, to develop a methodology for conducting experimental studies of the movement of compression foam in automatic fire extinguishing installations.

Methods. In the course of the work, the main theoretical and empirical research methods were used, as well as general scientific research methods (analysis, systematization).

Findings. The design of the experimental installation and the methodology for conducting experimental studies of the movement of compression foam in automatic fire extinguishing installations have been developed.

Application field of research. Development of a method for hydraulic calculation of automatic fire extinguishing installations generating compression foam.

Author Biographies

Kirill E. Shinkorenko, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Automatic System Security, Lecturer

Aleksandr V. Grachulin, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Automatic System Security, Senior Lecturer; PhD in Technical Sciences, Associate Professor

Vitaliy N. Ryabtsev, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Automatic System Security, Head of Chair; PhD in Technical Sciences, Associate Professor

References

Kamlyuk A.N., Likhomanov A.O., Grachulin A.V. Pennye orositeli dlya avtomaticheskikh ustanovok pozharotusheniya [Foam sprinklers for automatic fire extinguishing installations]: monograph. Minsk: University of Сivil Protection, 2023. 244 p. (rus)

Kamlyuk A.N., Grachulin A.V. Kompressionnaya pena dlya nuzhd pozharnykh podrazdeleniy [Compression foam for the needs of fire departments]: monograph. Minsk: University of Сivil Protection, 2019. 224 p. (rus)

Mamaev V.A., Odishariya G.E., Semenov N.I., Tochigin A.A. Gidrodinamika gazo-zhidkostnykh smesey v trubakh [Hydrodynamics of gas-liquid mixtures in pipes]. Moscow: Nedra, 1969. 208 p. (rus)

Kutateladze S.S., Styrikovich M.A. Gidrodinamika gazozhidkostnykh sistem [Hydrodynamics of gas-liquid systems]. Moscow: Energiya, 1976. 296 p. (rus)

Maron V.I. Gidrodinamika odnofaznykh i mnogofaznykh potokov v truboprovode [Hydrodynamics of single-phase and multi-phase flows in a pipeline]. Moscow: MAKS Press, 2009. 334 p. (rus)

Ostrovskiy G.M. [et al.]. Novyy spravochnik khimika i tekhnologa. Protsessy i apparaty khimicheskikh tekhnologiy [New handbook of chemist and technologist. Processes and apparatuses of chemical technologies]. Saint Petersburg: ANO NPO Professional, 2004. Part 1. 848 p. (rus)

Hewitt G., Hall-Taylor N.S. Kol'tsevye dvukhfaznye techeniya [Annular two-phase flows]: translated from English. Moscow: Energiya, 1974. 408 p. (rus)

Gritsenko A.I., Klapchuk O.V., Kharchenko Yu.A. Gidrodinamika gazozhidkostnykh smesey v skvazhinakh i truboprovodakh [Hydrodynamics of gas-liquid mixtures in wells and pipelines]. Moscow: Nedra, 1994. 238 p. (rus)

Spravochnik po teploobmennikam [Handbook of heat exchangers]: in 2 vol. Translated from English. Ed. by B.S. Petukhov, V.K. Shikov. Moscow: Energoatomizdat, 1987. Vol. 1. 560 p. (rus)

Arnold C.R., Hewitt G.F. Further developments in the photography of two-phase gas-liquid flow. Journal of Photographic Science, 1967. Vol. 15, Iss. 3. Pp. 97–114. DOI: https://doi.org/10.1080/00223638.1967.11737388.

Coleman J.W., Garimella S. Characterization of two-phase flow patterns in small diameter round and rectangular tubes. International Journal of Heat and Mass Transfer, 1999. Vol. 42, № 15. Pp. 2869–2881. DOI: https://doi.org/10.1016/S0017-9310(98)00362-7.

Cooper K.D., Hewitt G.F., Pinchin B. Photography of two-phase gas-liquid. Journal of Photographic Science, 1964. Vol. 12, Iss. 5. Pp. 269–278. DOI: https://doi.org/10.1080/00223638.1964.11737259.

Zhang Zh., Li Yu., Wang Zh., Hu Q., Wang D. Experimental study on radial evolution of droplets in vertical gas-liquid two-phase annular flow. International Journal of Multiphase Flow, 2020. Vol. 129. Article 103325. 9 p. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2020.103325.

Takamasa T., Hazuku T., Hibiki T. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability. International Journal of Heat and Fluid Flow, 2008. Vol. 29, № 6. Pp. 1593–1602. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2008.09.001.

Bhagwat S.M., Ghajar A.J. Similarities and differences in the flow patterns and void fraction in vertical upward and downward two phase flow. Experimental Thermal and Fluid Science, 2012. Vol. 39. Pp. 213–227. DOI: https://doi.org/10.1016/j.expthermflusci.2012.01.026.

Dasgupta A., Chandraker D.K., Kshirasagar S., Reddy B.R., Rajalakshmi R., Nayak A.K., Walker S.P., Vijayan P.K., Hewitt G.F. Experimental investigation on dominant waves in upward air-water two-phase flow in churn and annular regime. Experimental Thermal and Fluid Science, 2017. Vol. 81. Pp. 147–163. DOI: https://doi.org/10.1016/j.expthermflusci.2016.10.012.

Schmid D., Verlaat B., Petagna P., Revellin R., Schiffmann J. Flow pattern observations and flow pattern map for adiabatic two-phase flow of carbon dioxide in vertical upward and downward direction. Experimental Thermal and Fluid Science, 2022. Vol. 131. Article 110526. 16 p. DOI: https://doi.org/10.1016/j.expthermflusci.2021.110526.

Govier G.W., Radford B.A., Dunn J.S.C. The upwards vertical flow of air-water mixtures. 1. Effect of air and water rates on flow pattern, hold-up pressure drop. Canadian Journal of Chemical Engineering, 1957. Vol. 35. Pp. 58–70.

Wang G., Dang Zh., Ishii M. Wave structure and velocity in vertical upward annular two-phase flow. Experimental Thermal and Fluid Science, 2021. Vol. 120. Article 110205. 12 p. DOI: https://doi.org/10.1016/j.expthermflusci.2020.110205.

Zhao Yu., Markides Ch.N., Matar O.K., Hewitt G.F. Disturbance wave development in two-phase gas-liquid upwards vertical annular flow. International Journal of Multiphase Flow, 2013. Vol. 55. Pp. 111–129. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.04.001.

Hewitt G.F., King R.D., Lovegrove P.C. Liquid film and pressure drop studies. Chemical and Process Engineering, 1964. Vol. 45. Pp. 191–200.

Downloads


Abstract views: 251
PDF Downloads: 99

Published

2023-05-24

How to Cite

Shinkorenko К. Е., Grachulin А. В. and Ryabtsev В. Н. (2023) “Methods of experimental determination of compression foam flow regimes”, Journal of Civil Protection, 7(2), pp. 188–201. doi: 10.33408/2519-237X.2023.7-2.188.