Calculation of the thermodynamic parameters of the reaction between acryloyl chloride and water by density functional theory

Authors

  • Nguyen Huu Hieu University of Fire Prevention and Fighting of the Ministry of Public Security of Vietnam; 100000, Vietnam, Hanoi, Thanh Xuan, Khuat Duy Tien, 243 https://orcid.org/0000-0002-6758-8094
  • Phan Anh University of Fire Prevention and Fighting of the Ministry of Public Security of Vietnam; 100000, Vietnam, Hanoi, Thanh Xuan, Khuat Duy Tien, 243
  • Le Anh Tuan University of Fire Prevention and Fighting of the Ministry of Public Security of Vietnam; 100000, Vietnam, Hanoi, Thanh Xuan, Khuat Duy Tien, 243
  • Nguyen Thi Ngoc Anh University of Fire Prevention and Fighting of the Ministry of Public Security of Vietnam; 100000, Vietnam, Hanoi, Thanh Xuan, Khuat Duy Tien, 243

DOI:

https://doi.org/10.33408/2519-237X.2023.7-3.263

Keywords:

burning of acryloyl chloride, reaction with water, thermodynamic properties, DFT, acryloyl chloride, extinguishing by water

Abstract

Purpose. Study of thermodynamic properties of acryloyl chloride to predict the danger if the acryloyl chloride is extinguished by water.

Methods. Thermodynamic properties (including enthalpy, free energy, entropy and heat capacity at constant pressure) of acryloyl chloride at vapor phase at 1.0 atm pressure and temperature range from 298.15 to 1000.00 K in steps of 100.00 K are determined by DFT calculations using PBEPBE functional. As the basis set 6-311G++(d,p) is used.

Findings. Free energy, and heat of reaction between acryloyl chloride and water in the fire (at the same temperature range and pressure) have been calculated. In temperature range from 298.15 to 1000.00 K, the reaction between acryloyl chloride and water is exothermic. So, if firefighters use water to fight the fire of acryloyl chloride, a large amount of heat will be released. This heat makes the fire is more dangerous and difficult to fight.

Application field of research. The results of research can be used in prediction the hazard of burning of acryloyl chloride and ways of extinguishing it.

Author Biographies

Nguyen Huu Hieu, University of Fire Prevention and Fighting of the Ministry of Public Security of Vietnam; 100000, Vietnam, Hanoi, Thanh Xuan, Khuat Duy Tien, 243

Faculty of Basic Science

Phan Anh, University of Fire Prevention and Fighting of the Ministry of Public Security of Vietnam; 100000, Vietnam, Hanoi, Thanh Xuan, Khuat Duy Tien, 243

Fire Prevention Faculty, Deputy Head of the Faculty

Le Anh Tuan, University of Fire Prevention and Fighting of the Ministry of Public Security of Vietnam; 100000, Vietnam, Hanoi, Thanh Xuan, Khuat Duy Tien, 243

Fire Prevention Faculty

Nguyen Thi Ngoc Anh, University of Fire Prevention and Fighting of the Ministry of Public Security of Vietnam; 100000, Vietnam, Hanoi, Thanh Xuan, Khuat Duy Tien, 243

Faculty of Basic Science

References

Burke K. Perspective on density functional theory. The Journal of Chemical Physics, 2012. Vol. 136, Iss. 15. Article 150901, 10 p. DOI: https://doi.org/10.1063/1.4704546.

Geerlings P., De Proft F., Langenaeker W. Conceptual density functional theory. Chemical Reviews, 2003. Vol. 103, Iss. 5. Pp. 1793–1874. DOI: https://doi.org/10.1021/cr990029p.

Parr R.G. Density functional theory of atoms and molecules. In: Fukui K., Pullman B. (eds) Horizons of quantum chemistry. International Academy of Quantum Molecular Science, Vol. 3. Springer, Dordrecht, 1980. Pp. 5–15. DOI: https://doi.org/10.1007/978-94-009-9027-2_2.

Emmons H.W. The growth of fire science. Fire Safety Journal, 1981. Vol. 3, Iss. 2. Pp. 95–106. DOI: https://doi.org/10.1016/0379-7112(81)90036-9.

Sardqvist S. Water and other extinguishing agents. Raddnings Verket, Karlstad, Sweden, 2002. Pp. 35–147. ISBN: 91-7253-265-3.

Acryloyl chloride. Compound summary PubChem CID 13140. National Center for Biotechnology Information, available at: https://pubchem.ncbi.nlm.nih.gov/compound/Acryloyl-chloride (accessed: August 7, 2021).

Urben P. Bretherick's handbook of reactive chemical hazards: eTextbook. 8th edition. Elsevier, 2017. ISBN: 9780081010594.

Ohara T., Sato T., Shimizu N., Prescher G., Schwind H., Weiberg O., Marten K., Greim H., Shaffer T.D., Nandi P. Acrylic acid and derivatives. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 2020. DOI: https://doi.org/10.1002/14356007.a01_161.pub4.

Movsisyan M., Heugebaert T.S.A., Dams R., Stevens C.V. Safe, selective, and high-yielding synthesis of Acryloyl chloride in a continuous-flow system. ChemSusChem, 2016. Vol. 9, Iss. 15. Pp. 1945–1952. DOI: https://doi.org/10.1002/cssc.201600348.

Chinelatto M.A., Agnelli J.A.M., Canevarolo S.V. Synthesis and characterization of copolymers from hindered amines and vinyl monomers. Polímeros, 2014. Vol. 24, No. 1. Pp. 30–36. DOI: https://doi.org/10.4322/polimeros.2014.046.

Sharma P., Quintiere J.G. Compartment Fire Temperatures. Journal of Fire Protection Engineering, 2010. Vol. 20, Iss. 4. Pp. 253–271. DOI: https://doi.org/10.1177/1042391510380139.

Ma T. Ignitability and explosibility of gases and vapors. New York: Springer, 2015. DOI: https://doi.org/10.1007/978-1-4939-2665-7.

Koroleva L.A., Tyulin V.I., Ivannikova V.V., Matveev V.K., Pentin Yu.A. An analysis of the vibrational structure of the UV absorption spectrum of acryloyl chloride vapor. Russian Journal of Physical Chemistry, 2006. Vol. 80, No. 2. Pp. 231–237. DOI: https://doi.org/10.1134/S0036024406020208.

Compton D.A.C., George W.O., Goodfield J.E., Maddams W.F. The vibrational spectra, conformational and thermodynamic properties of 2-chlorobuta-1,3-diene (chloroprene) and propenoyl chloride. Spectrochimica Acta Part A: Molecular Spectroscopy, 1981. Vol. 37, Iss. 3. Pp. 147–161. DOI: https://doi.org/10.1016/0584-8539(81)80135-3.

Ge M., Ma C., Xue W. Acryloyl chloride and acryloyl isocyanate (CH2=CHC(O)X, X = Cl, NCO): a HeI photoelectron spectroscopy and theoretical study. The Journal of Physical Chemistry A, 2009. Vol. 113, Iss. 13. Pp. 3108–3115. DOI: https://doi.org/10.1021/jp8110277.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., et al. Gaussian 03. Revision A.1. Gaussian Inc., Pittsburgh, PA, 2003.

Sharma A., Gupta V.P., Virdi A. RHF and DFT based study of the structure, thermodynamic properties and electronic spectra of methacryloyl halides. Indian Journal of Pure & Applied Physics, 2004. Vol. 42, Iss. 4. Pp. 251–257.

Enudi O.C., Louis H., Edim M.M., Agwupuye J.A., Ekpen F.O., Bisong E.A., Utsu P.M. Understanding the aqueous chemistry of quinoline and the diazanaphthalenes: insight from DFT study. Heliyon, 2021. Vol. 7, Iss. 7. Article E07531. DOI: https://doi.org/10.1016/j.heliyon.2021.e07531.

Gillan M.J., Alfè D., Michaelides A. Perspective: How good is DFT for water? The Journal of Chemical Physics, 2016. Vol. 144, Iss. 13. Article 130901. 34 p. DOI: https://doi.org/10.1063/1.4944633.

Zeinalipour-Yazdia C.D., Catlowa C.R.A. An experimental and computational IR and hybrid DFT-D3 study of the conformations of L-lactic and acrylic acid: new insight to the dehydration mechanism of lactic acid to acrylic acid. Physical Chemistry Chemical Physics, 2019. Vol. 21, Iss. 40. Pp. 22331–22343. DOI: https://doi.org/10.1039/C9CP02968K.

Hossain M.A., Jewaratnam J., Ramalingam A., Sahu J.N., Ganesan P. A DFT method analysis for formation of hydrogen rich gas from acetic acid by steam reforming process. Fuel, 2018. Vol. 212, Pp. 49–60. DOI: https://doi.org/10.1016/j.fuel.2017.09.098.

Verdes M., Paniagua M. Quantum chemical study of atmospheric aggregates: HCl•HNO3•H2SO4. Journal of molecular modeling, 2014. Vol. 20, Iss. 6. Article 2232. DOI: https://doi.org/10.1007/s00894-014-2232-6.

Silva N.R., Calamia C.S., Harsono M., Carvalho R.M., Pegoraro L.F., Fernandes C.A.O., Vieira A.C., Thompson V.P. Bond angle effects on microtensile bonds: Laboratory and FEA comparison. Dental Materials, 2006. Vol. 22, Iss. 4. Pp. 314–324. DOI: https://doi.org/10.1016/j.dental.2005.05.006.

Burbury S.H. Diffusion and entropy of gases. Science Progress in the Twentieth Century (1906–1916), 1908. Vol. 2, No. 8. Pp. 598–609. Available at: http://www.jstor.org/stable/43776641 (accessed: July 1, 2021).

Acharya S., Bagchi B. Study of entropy–diffusion relation in deterministic Hamiltonian systems through microscopic analysis. The Journal of Chemical Physics, 2020. Vol. 153, Iss. 18. Article 184701. DOI: https://doi.org/10.1063/5.0022818.

Supplee,J.M. Diffusion as an example of entropy increase and the associated lost opportunity to perform work. European Journal of Physics, 1980. Vol. 1, No. 3. Pp. 153. DOI: https://doi.org/10.1088/0143-0807/1/3/007.

Cook R.L., De Lucia F.C., Helminger P. Molecular force field and structure of water: Recent microwave results. Journal of Molecular Spectroscopy, 1974. Vol. 53, Iss. 1. Pp. 62–76. DOI: https://doi.org/10.1016/0022-2852(74)90261-6.

Hoy A.R., Bunker P.R. A precise solution of the rotation beninding Schrodinger equation for a triatomic molecule with application to the water molecule. Journal of Molecular Spectroscopy, 1979. Vol. 74, Iss. 1. Pp. 1–8. DOI: https://doi.org/10.1016/0022-2852(79)90019-5.

Hehre W.J., Radom L., Schleyer P.V.R., Pople J.A. Ab initio molecular orbital theory. USA, New York: John Wiley, 1986. 576 p. ISBN: 9780471812418.

Chase Jr. M.W. NIST-JANAF Thermochemical Tables, 4th Edition. Journal of Physical and Chemical Reference Data, 1998. Monograph No. 9. Part I, A-Co. 1951 p. ISBN: 9781563968310.

Cox J.D., Wagman D.D., Medvedev V.A. CODATA key values for thermodynamics. USA, New York: Hemisphere Publishing Corp., 1989. 271 p. ISBN: 9780891167587.

Selected values of properties of chemical compounds. Thermodynamics Research Center. Texas A&M University, College Station, Texas, 1997.

Laidler K.J. A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996). Pure and Applied Chemistry, 1996. Vol. 68, No. 1. Pp. 149–192. DOI: https://doi.org/10.1351/pac199668010149.

Schmidt-Rohr K. Why combustions are always exothermic, yielding about 418 kJ per mole of O2. Journal of Chemical Education, 2015. Vol. 92, Iss. 12. Pp. 2094–2099. DOI: https://doi.org/10.1021/acs.jchemed.5b00333.

Emergency Response Guidebook (ERG2020). United States Government DOT Department of Transportation. Independently published, 2020. Guide 132. Pp. 200–201. ISBN: 9798673746103.

Downloads


Abstract views: 259
PDF Downloads: 122

Published

2023-08-10

How to Cite

Nguyen, H. H., Phan, A., Le, A. T. and Nguyen, T. N. A. (2023) “Calculation of the thermodynamic parameters of the reaction between acryloyl chloride and water by density functional theory”, Journal of Civil Protection, 7(3), pp. 263–281. doi: 10.33408/2519-237X.2023.7-3.263.