On the effectiveness of fire extinguishing with low-multiplicity air-mechanical foam formed by foam generators
DOI:
https://doi.org/10.33408/2519-237X.2023.7-4.355Keywords:
foam generator, foam multiplicity, air-foam nozzle, foam extinguishing, extinguishing efficiency, extinguishing time, fire extinguishing agent consumptionAbstract
Purpose. To develop methods and conduct full-scale tests of foam generators. To perform a comparative assessment of the effectiveness of extinguishing foam formed by each of the generators basing on test results.
Methods. The evaluation of the effectiveness of extinguishing with foam formed by foam generators was carried out experimentally, and the processing of the experimental data obtained was carried out using the method of estimation and expression of measurement uncertainty.
Findings. The methods of full-scale tests to determine the effectiveness of extinguishing foam formed by foam generators have been developed. The full-scale tests of three foam generators used in the Republic of Belarus have been carried out: air-foam barrel (hereinafter referred to as SVP), water-filled nozzle for the SRK-50 fire barrel (hereinafter referred to as NVP-11/0.6 U1) and air-foam nozzle for the SPRUK 50/0.7 fire barrel (hereinafter referred to as VPN SPRUK 50/0.7). To compare the effectiveness of extinguishing with foam, the Et extinguishing efficiency indicator was used, taking into account the extinguishing time of the model fire source and the consumption of extinguishing agent. As a result of full-scale tests, it was found that the foam generated by the VPN SPRUK 50/0.7 has 7.5 and 10 times greater fire extinguishing efficiency compared to the SVP barrel and 8.8 and 1.2 times compared to the NVP-11/0.6 U1 when extinguishing a model hearth of classes A and B, respectively. Also, NVP-11/0.6 U1 when extinguishing Class B fires has a higher (at least 9 times higher) extinguishing efficiency than SVP.
Application field of research. The developed methods of field tests to determine the effectiveness of extinguishing foam generated by foam generators can be used in the development of domestic technical regulations in this area, as well as for the study of other foam generators in conditions close to a real fire.
References
Baratov A.N., Korol'chenko A.Ya., Kravchuk G.N. et al. Pozharovzryvoopasnost' veshchestv i materialov i sredstva ikh tusheniya [Fire and explosion hazard of substances and materials and means of their extinguishing]: reference edition in 2 books. Moscow: Khimiya, 1990. Book 1. 496 p. (rus)
Kamlyuk A.N., Grachulin A.V. Kompressionnaya pena dlya nuzhd pozharnykh podrazdeleniy [Compression foam for the needs of fire departments]: monograph. Minsk: University of Civil Protection, 2019. 224 p. (rus)
Kamlyuk A.N., Grachulin A.V., Tran Duc Hoan Kavitatsionnyy vodopennyy nasadok pozharnogo stvola [Cavity water-foam nozzle for fire nozzle]: utility model patent BY 10841. Published Oktober 30, 2015. (rus)
Kamlyuk A.N., Maksimovich D.S., Tran Duc Hoan., Parmon V.V. Issledovanie vodopennykh nasadkov pozharnogo stvola s tsel'yu povysheniya urovnya pozharnoy bezopasnosti [Study of water and foam nozzles fire barrel in order to improve fire safety]. Emergency situations: prevention and elimination, 2014. No. 2 (36). Pp. 113–120. (rus). EDN: https://elibrary.ru/WCOMWR.
Kamlyuk A.N., Maksimovich D.S., Tran Duc Hoan, Grachulin A.V. Eksperimental'nye issledovaniya opytnykh obraztsov vodopennogo nasadka [Experimental research of prototypes of water-foam nozzle]. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus', 2015. No. 2 (22). Pp. 61–67. (rus) EDN: https://elibrary.ru/UHHCDF.
Kamlyuk A.N., Shirko A.V., Grachulin A.V., Nguyen Dong Anh, Tran Duc Hoan. Chislennoe modelirovanie dvizheniya ognetushashchego veshchestva po protochnomu traktu vodopennogo nasadka [Numerical modeling of the motion of the extinguishing agent in flow path of water-foam nozzle]. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus', 2016. No. 1 (23). Pp. 60–67. (rus) EDN: https://elibrary.ru/VKXNTN.
Tran Duc Hoan. Metodika rascheta osnovnykh geometricheskikh parametrov vodopennogo nasadka na stvol pozharnyy ruchnoy SRK-50 [Calculation method main geometrical parameters of water-foam nozzle on the SRK-50]. Emergency situations: education and science, 2016. Vol. 11, No. 1. Pp. 41–49. (rus)
Tran Duc Hoan, Rivans V.Yu., Kamlyuk A.N. Issledovanie kharakteristik vodopennykh nasadkov pri razlichnykh rezhimakh podachi ognetushashchego sredstva [Research of water-foam nozzles characteristics in various modes of extinguishing agent discharging]. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus', 2016. No. 2 (24). Pp. 88–97. (rus). EDN: https://elibrary.ru/WEZNQT.
Kamlyuk A.N., Parmon V.V., Morozov A.A. Stvol pozharnyy ruchnoy universal'nyy kombinirovannyy s raskhodom do 5 l/s i vozmozhnost'yu formirovaniya vozdushno-mekhanicheskoy peny [Universal firefighter manual fire barrel combined with a flow rate of up to 5 l/s and the possibility of forming an air-mechanical foam]. Scientific & educational problems of the civil protection, 2019. No. 1 (40). Pp. 76–85. (rus). EDN: https://elibrary.ru/ZEUEPZ.
Kamlyuk A.N., Parmon V.V., Striganova M.Yu., Morozov A.A., Kurochkin A.S. Penogenerator pozharnogo stvola SPRUK 50/0,7 «Viking» [Foam generator of the fire nozzle SPRUK 50/0,7 «Viking»]. Journal of Civil Protection, 2018. Vol. 2 No. 3. Pp. 335–342. (rus). DOI: https://doi.org/10.33408/2519-237X.2018.2-3.335. EDN: https://elibrary.ru/XWQHQT.
Kamlyuk A.N., Parmon V.V., Striganova M.Yu., Morozov A.A. Optimizatsiya geometricheskikh parametrov penogeneratora pozharnogo stvola SPRUK 50/0,7 «Viking» [Optimization of geometrical parameters of the fire removal penogenerator SPRUK 50/0.7 «Viking»]. Journal of Civil Protection, 2018. Vol. 2 No. 4. Pp. 470–476. (rus). DOI: https://doi.org/10.33408/2519-237X.2018.2-4.470. EDN: https://elibrary.ru/YPMHRR.
Morozov A.A. Vliyanie mesta ustanovki penogeneriruyushchey setki penogeneratora pozharnogo stvola SPRUK 50/0,7 «Viking» na kratnost' peny [Influence of the place of installation of the foaming generating grid of the fire stem foam generator SPRUK 50/0.7 «Viking» on the better foam]. Emergency situations: prevention and elimination, 2018. Vol. 2 No. 44. Pp. 130–136. (rus) EDN: https://elibrary.ru/YPRKEZ.
Kamlyuk A.N., Parmon V.V., Grachulin A.V., Morozov A.A. Vozdushno-pennyy nasadok pozharnogo stvola [Air-foam nozzle of the fire barrel]: utility model patent BY 12065. Published August 30, 2019. (rus)
Kamlyuk A.N., Navrotskiy O.D., Grachulin A.V. Tushenie pozharov penogeneriruyushchimi sistemami so szhatym vozdukhom [Fire extinguishing by compressed air foam systems]. Journal of Civil Protection, 2017. Vol. 1 No. 1. Pp. 44–53. (rus). DOI: https://doi.org/10.33408/2519-237X.2017.1-1.44. EDN: https://elibrary.ru/YINHPR.
Kamlyuk A.N., Likhomanov A.O., Grachulin A.V. Eksperimental'noe opredelenie effektivnosti tusheniya pozhara klassa B penoy nizkoy kratnosti, generiruemoy rozetochnymi orositelyami [Experimental determination of the Class B fire extinguishing efficiency using low-expansion foam generated by deflector type sprinklers]. Journal of Civil Protection, 2020. Vol. 4 No. 3. Pp. 251–264. (rus). DOI: https://doi.org/10.33408/2519-237X.2020.4-3.251. EDN: https://elibrary.ru/EPIYWF.
Abduragimov I.M. Kriteriy tusheniya pozharov okhlazhdayushchimi ognetushashchimi sredstvami [Criterion for extinguishing fires with cooling extinguishing agents]. Zhurnal Vsesoyuznogo khimicheskogo obshchestva im. D.I. Mendeleeva, 1982. Vol. 27, No. 1. Pp. 11–17. (rus)
Korol'chenko D.A., Sharovarnikov A.F., Degaev E.N. Ognetushashchaya effektivnost' peny nizkoy kratnosti [Fire extinguishing effectiveness of low multiplicity foam]. Nauchnoe obozrenie, 2015. No. 8. Pp. 114–120. (rus). EDN: https://elibrary.ru/UCQRSB.
Khil' E.I., Voevoda S.S., Sharovarnikov A.F., Makarova I.P. Eksperimental'noe opredelenie minimal'nogo udel'nogo raskhoda i optimal'noy intensivnosti podachi penoobrazovatelya pri tushenii plameni nefteproduktov [Experimental determination of minimum discharge intensity and optimum rate of foaming agent input during suppression of oil products flame]. Fire Safety, 2015. No. 4. Pp. 76–87. (rus). EDN: https://elibrary.ru/VCMJWX.
Korol'chenko D.A. Analiz protsessa tusheniya plameni goryuchikh zhidkostey dispersnymi ognetushashchimi veshchestvami i penoy nizkoy kratnosti [Analysis of the process of extinguishing of a flame of flammable liquids by disperse extinguishing agents and low expansion foam]. Fire and Explosion Safety, 2016. Vol. 25, No. 2. Pp. 51–58. (rus). DOI: https://doi.org/10.18322/PVB.2016.25.02.51-58. EDN: https://elibrary.ru/VRCITR.
Korol'chenko D.A. Analiz dvoystvennogo mekhanizma tusheniya plameni [Analysis of the dual mechanism of flame extinguishing]. Tekhnika i tekhnologiya: novye perspektivy razvitiya, 2016. No. 18. Pp. 28–34. (rus). EDN: https://elibrary.ru/UKKOYL.
Korol'chenko D.A., Sharovarnikov A.F. Ognetushashchaya effektivnost' peny nizkoy kratnosti [Universality of mechanisms of fire suppression by various extinguishing agents]. Fire and Explosion Safety, 2014. Vol. 23 No. 11. Pp. 84–88. (rus). EDN: https://elibrary.ru/TRPCID.
Korol'chenko D.A., Sharovarnikov A.F., Degaev E.N. Laboratornaya metodika opredeleniya izoliruyushchikh svoystv peny na poverkhnosti geptana [Laboratory standard technique for insulating properties of foam on heptane surface]. Fire and Explosion Safety, 2014. Vol. 23, No. 4. Pp. 72–76. (rus). EDN: https://elibrary.ru/SCXYUH.
Sharovarnikov A.F., Korolchenko D.A. Fighting fires of carbon dioxide in the closed buildings. Applied Mechanics and Materials, 2013. Vol. 475–476. Pp. 1344–1350. DOI: https://doi.org/10.4028/www.scientific.net/amm.475-476.1344.
Published
How to Cite
License
Copyright (c) 2023 Kamlyuk A.N., Morozov A.A., Pivovarov A.V.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.