Influence of hydrodynamic parameters of the jet and geometric parameters of the frame arm and deflector of the sprinkler on foam expansion rate

Authors

  • Eduard G. Govor State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0002-4040-3264
  • Aleksey O. Likhomanov State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0002-9374-1486
  • Andrey N. Kamlyuk State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0002-9347-0778
  • Tatyana A. Govor State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0009-0002-7927-8971
  • Vladimir A. Yarets Branch «Institute of Vocational Education» of the State Educational Establishment «University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 246023, Belarus, Gomel, Rechitskiy ave., 35A https://orcid.org/0009-0004-9637-2235

DOI:

https://doi.org/10.33408/2519-237X.2023.7-2.202

Keywords:

automatic extinguishing system, deflector type sprinkler, sprinkler frame arm, sprinkler deflector, nozzle diameter, jet hydrodynamic parameters, Weber number, air-mechanical foam, foam expansion rate, full factorial experiment

Abstract

Purpose. To determine the dependence of the expansion rate of air-mechanical foam on the hydrodynamic parameters of the jet of an aqueous solution of a synthetic hydrocarbon foaming agent that does not contain fluorinated surfactants, taking into account the variation in the geometric parameters of the elements of the deflector type sprinkler (nozzle, frame arm and deflector).

Methods. The theoretical methods of analysis, comparison and synthesis, as well as the method of a full factorial experiment to obtain a regression model were used.

Findings. The full factorial experiment on the three levels of five factors affecting the expansion rate of foam generated by the deflector type sprinkler was carried out. The three levels of the Weber number were equal to 23 100, 47 900 and 75 900 accordingly, the frame arm length L was 30, 50 and 150 mm, the deflector working surface coefficient Ks was 50, 64 и 100 %, the outer deflector diameter D was 20, 50 and 100 mm and the deflector taper angle α was 15, 30 and 45°. To generate foam the synthetic hydrocarbon foaming agent Sintek-6NS (6 %), which does not contain fluorinated surfactants and belongs to the foaming agents of general purpose (type S) according to STB 2459-2016, was used. After the analysis of the obtained experimental data the regression model for predicting the foam expansion rate in the studied ranges of values of the Weber number and the geometrical parameters of frame arm and deflector of the sprinkler was developed. For the created model the coefficient of determination R2 is 0.93, which indicates a high accuracy of description of the dependent variable (foam expansion rate K) from the studied factors, while the deviation of theoretical values of foam expansion rate from empirical ones does not exceed 8.9 %.

Application field of research. The developed regression model allows the selection of optimal configurations (combinations of geometric parameters) of the deflector type sprinkler, in particular the deflector working surface coefficient, the outer diameter and the taper angle of the deflector, the frame arm length and the diameter of the sprinkler nozzle to obtain foam with the required expansion rate, depending on the conditions and objectives of the application of the extinguishing agent.

Author Biographies

Eduard G. Govor, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Department of Scientific and Innovation Activity, Researcher

Aleksey O. Likhomanov, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Automatic System Security, Associate Professor; PhD in Technical Sciences

Andrey N. Kamlyuk, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Deputy Chief of the University on Scientific and Innovative Activity; PhD in Physical and Mathematical Sciences, Associate Professor

Tatyana A. Govor, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Administration Training Faculty, graduate student

Vladimir A. Yarets, Branch «Institute of Vocational Education» of the State Educational Establishment «University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 246023, Belarus, Gomel, Rechitskiy ave., 35A

Chair of Professional Training, Lecturer

References

Ahrens M. U.S. Experience with sprinklers. Quincy: NFPA Research, 2017. 35 p.

Chen T., Fu X., Bao Zh., Xia J., Wang R. Experimental study on the extinguishing efficiency of compressed air foam sprinkler system on oil pool fire. Procedia Engineering, 2018. Vol. 211. Pp. 94–103. DOI: https://doi.org/10.1016/j.proeng.2017.12.142.

Dlugogorski, B.Z. What properties matters in fire-fighting foams?: whitepaper / B.Z. Dlugogorski, E.M. Kennedy, T.H. Shaefer, J.A. Vitali. – Tokyo, 2002. – 20 p.

Kamlyuk A.N., Grachulin A.V. Kompressionnaya pena dlya nuzhd pozharnykh podrazdeleniy [Compression foam for the needs of fire departments]: monograph. Minsk: University of Сivil Protection, 2019. 224 p. (rus)

Kachanov I.V., Karpenchuk I.V., Pavlyukov S.Yu. Ustanovki avtomaticheskogo pozharotusheniya s predvaritel'noy aeratsiey ognetushashchey rabochey sredy [Automatic fire extinguishing installations with preliminary aeration of the fire extinguishing working medium]. Minsk: BNTU, 2018. 148 p. (rus)

Kucher V.M., Merkulov V.A., Zhukov V.V., Kucher V.N., Ponimasov V.M. Izuchenie protsessov tusheniya plameni nefteproduktov nizkokratnymi penami [Study of the processes of extinguishing the oil products flame with low-expansion foams]. Pozharotushenie: proceedings of VNIIPO. Мoscow: VNIIPO, 1984. Pp. 29–37. (rus)

Laundess A.J., Rayson M.S., Dlugogorski B.Z., Kennedy E.M. Small-scale test protocol for firefighting foams DEF(AUST)5706: effect of bubble size distribution and expansion ratio. Fire Technology, 2011. Vol. 47. Pp. 149–162. DOI: https://doi.org/10.1007/s10694-009-0136-2.

Kamluk A.N., Likhomanov A.O. Increasing foam expansion rate by means of changing the sprinkler geometry. Fire Safety Journal, 2019. Vol. 109. Article 102862. 8 p. DOI: https://doi.org/10.1016/j.firesaf.2019.102862.

Kamluk A.N., Likhomanov A.O., Grachulin A.V. Field testing and extinguishing efficiency comparison of the optimized for higher expansion rates deflector type sprinkler with other foam and foam-water sprinklers. Fire Safety Journal, 2020. Vol. 116. Article 103177. 10 p. DOI: https://doi.org/10.1016/j.firesaf.2020.103177.

Likhomanov A.O., Govor E.G., Kamlyuk A.N. O vzaimosvyazyakh geometricheskikh parametrov orositelya, ustoychivosti i kratnosti poluchaemoy peny [On the relationship between the sprinkler geometric parameters, stability and expansion rate of the generated foam]. Journal of Civil Protection, 2021. Vol. 5, No. 2. Pp. 174–185. (rus). DOI: https://doi.org/10.33408/2519-237X.2021.5-2.174. EDN: https://elibrary.ru/ZKVVOJ.

Лихоманов, А.О. Длина начального участка осесимметричной турбулентной струи, образующейся в пенном розеточном оросителе для автоматических установок пожаротушения [The breakup length of axisymmetric turbulent jet in the foam deflector type sprinkler for automatic extinguishing systems] Journal of Civil Protection, 2021. Vol. 5, No. 2. Pp. 159–173. (rus). DOI: https://doi.org/10.33408/2519-237X.2021.5-2.159. EDN: https://elibrary.ru/ZRNKUV.

Govor E.G., Govor T.A., Likhomanov A.O. Eksperimental'noe issledovanie geometricheskikh parametrov shtutsera orositelya i ikh vliyanie na gidrodinamicheskie parametry strui vodnykh rastvorov razlichnykh penoobrazovateley [Experimental study of the geometric parameters of the sprinkler nozzle and their influence on the hydrodynamic parameters of the jet of aqueous solutions of various foam concentrates]. Proc. XVII Intern. scientific-practical conf. dedicated to the 90th anniversary of the of the formation of civil defense «Pozharnaya i avariynaya bezopasnost'», November 24, 2022. Ivanovo: Ivanovo Fire Rescue Academy of the State Fire Service of EMERCOM of Russia, 2022. Pp. 315–321. (rus)

Khalafyan A.A. Promyshlennaya statistika: kontrol' kachestva, analiz protsessov, planirovanie eksperimentov v pakete STATISTICA [Industrial statistics: quality control, process analysis, experiment design in STATISTICA]. Мoscow: Knizhnyy dom «LIBROKOM», 2013. 384 p. (rus)

Kamlyuk A.N., Likhomanov A.O., Grachulin A.V. Pennye orositeli dlya avtomaticheskikh ustanovok pozharotusheniya [Foam sprinklers for automatic fire extinguishing installations]: monograph. Minsk: University of Сivil Protection, 2023. 244 p. (rus)

Downloads


Abstract views: 158
PDF Downloads: 54

Published

2023-05-24

How to Cite

Govor Э. Г., Likhomanov А. О., Kamlyuk А. Н., Govor Т. А. and Yarets В. А. (2023) “Influence of hydrodynamic parameters of the jet and geometric parameters of the frame arm and deflector of the sprinkler on foam expansion rate”, Journal of Civil Protection, 7(2), pp. 202–214. doi: 10.33408/2519-237X.2023.7-2.202.

Most read articles by the same author(s)

1 2 > >>