Obtaining optimal parameters of high-speed electrochemical deposition of nickel coatings for parts of fire rescue equipment by the method of mathematical planning of the experiment
DOI:
https://doi.org/10.33408/2519-237X.2024.8-3.289Keywords:
protective nickel coatings, high-speed silicofluoride electrolytes, nickel hexafluorosilicate complexes, full factor experimentAbstract
Purpose. Development of a mathematical model of a multifactor process of hydrometallurgical synthesis of protective nickel coatings for fire rescue equipment parts from high-speed silicofluoride electrolytes to determine the optimal technological modes of operation when varying a number of factors (concentration of nickel silicofluoride in solution, cathodic current density, solution temperature).
Methods. The randomization method, standard techniques for determining electrochemical characteristics (thickness of deposited nickel coatings, current yield of the cathodic reaction), the «Desirability Profiles» module of the STATISTICA software package, as well as the method of full factorial experiment to obtain a regression model were applied in this work.
Findings. A full factorial experiment using a new high-speed silicofluoride electrolyte for nickel plating at three levels of factors affecting the deposition rate of nickel coatings was carried out: molar concentration of nickel silicofluoride (NiSiF6) in solution c = 1; 1.25; 1.5 mol/dm3, temperature of electrolyte solution t = 40; 50; 60 °C, cathodic current density i = 8; 10; 12 A/dm2. As a result of the analysis of experimental data, a regression model for predicting the deposition rate of nickel coatings in the studied ranges of changing of the varying factors was developed. Optimal values of the varied factors are: molar concentration of NiSiF6 in solution c = 1.2 mol/dm3; temperature of electrolyte solution t = 53 °C; cathodic current density i = 11.6 A/dm2. Under these conditions, the highest value of the dependent variable (deposition rate of nickel coating), which is 240.7 μm/h, is achieved.
Application field of research. The developed regression model makes it possible to determine the optimal range for each of the main parameters of the system, in particular, the concentration of nickel silicon fluoride in solution, cathode current density, and electrolyte temperature, which makes it possible to outline ways to minimize side processes (formation of nickel oxo- and hydroxo compounds and hydrogen release at the cathode) to obtain protective nickel coatings with specified properties.
References
Gamburg Yu.D. Elektrokhimicheskaya kristallizatsiya metallov i splavov [Electrochemical crystallization of metals and alloys]. Moscow: Yanus-K, 1997. 384 p. (rus)
Troshanin N.V., Bychkova T.I. Geteroligandnye kompleksy medi (II), nikelya (II), kobal'ta (II) s gidrazidom izonikotinovoy kisloty i L-gistidinom [Heteroligand copper (II), nickel (II) and cobalt (II) with isonicotinic acid hydrazide and L-histidine]. Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki, 2021. Vol. 163, No. 1. Pp. 45–60. (rus). DOI: https://doi.org/10.26907/2542-064X.2021.1.45-60. EDN: https://elibrary.ru/GLHVYP.
Dolgikh O.V., Sotskaya N.V., Shamanaeva E.S. Elektroosazhdenie nikelya iz rastvorov, soderzhashchikh glitsin [Electrodeposition of nickel from solutions comprising glycine]. Condensed Matter and Interphases, 2006. Vol. 8, No. 4. Pp. 275–282. (rus). EDN: https://elibrary.ru/MUHJID.
Loginova O.Yu. Razrabotka sul'fatno-glitsinatno-khloridnogo elektrolita i usloviy elektroosazhdeniya splava nikel'-fosfor [Development of sulphate-glycinate-chloride electrolyte and conditions for electrodeposition of nickel-phosphorus alloys]. PhD tech. sci. diss.: 05.17.03. Moscow, 2016. 148 p. (rus)
Taranina O.A., Evreinova N.V., Shoshina I.A., Naraev V.N., Tikhonov K.I. Elektroosazhdenie nikelya iz sul'fatnykh rastvorov v prisutstvii aminouksusnoy kisloty [Electrodeposition of nickel from sulphate solutions in the presence of aminoacetic acid]. Russian Journal of Applied Chemistry, 2010. Vol. 83, No. 1. Pp. 60–63. (rus). DOI: https://doi.org/10.1134/S107042721001012X. EDN: https://elibrary.ru/GJQFCK.
Belov P.A., Petrova V.O., Khorunzhaya E.Yu. Modelirovanie protsessa gal'vanicheskogo naneseniya kompozitsionnykh pokrytiy na osnove medi [Modelling of the process of electroplating of copper-based composite coatings]. Auditorium, 2016. No. 3 (11). Pp. 95–101. (rus). EDN: https://elibrary.ru/WWWSWD.
Litovka Yu.V., Kirichenko G.A., Popova M.A., Popov A.S. SAPR gal'vanicheskikh protsessov [SAD for galvanic processes]. Transactions of the Tambov State Technical University, 2008. Vol. 14, No. 4. Pp. 882–891. (rus). EDN: https://elibrary.ru/KASBFF.
Solov'ev D.S., Litovka Yu.V. Matematicheskoe modelirovanie i optimal'noe upravlenie protsessom osazhdeniya gal'vanicheskogo pokrytiya v mnogoanodnoy vanne s uchetom izmeneniya kontsentratsii komponentov elektrolita [Mathematical modeling and optimal control deposition process galvanic coverings in a multianode bath taking into account change concentrations of electrolyte components]. Computer Research and Modeling, 2013. Vol. 5, No. 2. Pp. 193–203. (rus). EDN: https://elibrary.ru/QYUQUN.
Govor T.A., Reva O.V. Skorostnoy gidrometallurgicheskiy sintez bezdefektnykh zashchitnykh nikelevykh pokrytiy dlya detaley pozharnoy avariyno-spasatel'noy tekhniki [Fast hydrometallurgical synthesis of defect-free protective nickel coatings for rescue equipment details]. Proc. XVII Intern. scientific-practical conf. young scientists «Obespechenie bezopasnosti zhiznedeyatel'nosti: problemy i perspektivy», Minsk, April, 18, 2024. Minsk: University of Civil Protection, 2024. Pp. 24–26. (rus). ISBN 978-985-590-228-8.
Grinfel'd G.M., Moiseev A.V. Metody optimizatsii eksperimenta v khimicheskoy tekhnologii [Methods for optimizing experiments in chemical technology]: lecture notes. Komsomolsk-on-Amur: Komsomolsk-na-Amure State University, 2014. 74 p. (rus). ISBN 978-5-7765-1102-8.
Rebrova I.A. Planirovanie eksperimenta [Experiment planning]: tutorial. Omsk: Siberian State Automobile and Highway University, 2010. 105 p. (rus)
Volodarskiy E.T., Malinovskiy B.N., Tuz Yu.M. Planirovanie i organizatsiya izmeritel'nogo eksperimenta [Planning and organisation of a measurement experiment]. Kiev: Vishcha shkola, 1987. 280 p. (rus)
Bondar' A.G., Statyukha G.A., Potyazhenko I.A. Planirovanie eksperimenta pri optimizatsii protsessov khimicheskoy tekhnologii (algoritmy i primery) [Planning an experiment when optimizing chemical technology processes (algorithms and examples)]: tutorial. Kiev: Vishcha shkola, 1980. 264 p. (rus)
Adler Yu.P., Markova E.V., Granovskiy Yu.V. Planirovanie eksperimenta pri poiske optimal'nykh usloviy [Planning an experiment when searching for optimal conditions]. Moscow: Nauka, 1976. 139 p. (rus)
Khalafyan A.A. Promyshlennaya statistika: kontrol' kachestva, analiz protsessov, planirovanie eksperimentov v pakete STATISTICA [Industrial statistics: quality control, process analysis, experiment design in STATISTICA]. Мoscow: LIBROKOM, 2013. 384 p. (rus)
Published
How to Cite
License
Copyright (c) 2024 Reva O.V., Govor T.A.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.