Approaches to calculating the expansion, dispersion and stability of low expansion air-mechanical foams

Authors

  • Andrey N. Kamlyuk State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0002-9347-0778

DOI:

https://doi.org/10.33408/2519-237X.2025.9-1.54

Keywords:

foam, expansion rate, stability, dispersion, average bubble diameter, gas content, capillary number, wetting capacity index

Abstract

Purpose. To theoretically evaluate the influence of the main factors affecting the expansion rate, dispersion and stability of air-mechanical foam produced in fire extinguishing devices.

Methods. Theoretical and empirical methods of analysis were used in the research.

Findings. As a result of the analysis of theoretical and experimental data on foam research, the main factors affecting the numerical values of their expansion rate, dispersion and stability were identified. It was found that the expansion rate, dispersion and stability of such foams significantly depend on the generation method, geometric characteristics of the devices, the rate of the supplied foaming agent solution and its physical and mechanical properties.

Application field of research. The results of the analysis can be used in the development of foam-generating devices, as well as to determine the optimal modes of their operation.

Author Biography

Andrey N. Kamlyuk, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Deputy Chief of the University on Scientific and Innovative Activity; PhD in Physical and Mathematical Sciences, Associate Professor

References

Vetoshkin A.G. Fizicheskie osnovy i tekhnika protsessov separatsii peny [Physical basis and technique of foam separation processes]: scientific edition. Moscow: Infra-Inzheneriya, 2016. 404 p. (rus). ISBN: 978-5-9729-0111-1.

Hill C., Eastoe J. Foams: From nature to industry. Advances in Colloid and Interface Science, 2017. Vol. 247. Pp. 496–513. DOI: https://doi.org/10.1016/j.cis.2017.05.013.

Micheau C., Dedovets D., Bauduin P., Diat O., Girard L. Nanoparticle foam flotation for caesium decontamination using a pH-sensitive surfactant. Environmental science: Nano, 2019. Vol. 6, No. 5. Pp. 1576–1584. DOI: https://doi.org/10.1039/c9en00188c.

Murray B.S. Recent developments in food foams. Current Opinion in Colloid and Interface Science, 2020. Vol. 50. Article 101394. 24 p. DOI: https://doi.org/10.1016/j.cocis.2020.101394.

Elias F., Crassous J., Derec C., Dollet B., Drenckhan W., Gay C., Leroy V., Noûs C., Pierre J., Saint‐Jalmes A. The Acoustics of Liquid Foams. Current Opinion in Colloid and Interface Science, 2020. Vol. 50. Article 101391. 13 p. DOI: https://doi.org/10.1016/j.cocis.2020.101391.

Majeed T., Kamal M.S., Zhou X., Solling T. A Review on Foam Stabilizers for Enhanced Oil Recovery. Energy & Fuels, 2021. Vol. 35, No. 7. Pp. 5594–5612. DOI: https://doi.org/10.1021/acs.energyfuels.1c00035.

Trinh P., Mikhailovskaya A., Zhang M., Perrin P., Pantoustier N., Lefèvre G., Monteux C. Leaching Foams for Copper and Silver Dissolution: A Proof of Concept of a More Environmentally Friendly Process for the Recovery of Critical Metals. ACS Sustainable Chemistry & Engineering, 2021. Vol. 9, No. 42. Pp. 14022–14028. DOI: https://doi.org/10.1021/acssuschemeng.1c02258.

Kamlyuk A.N., Grachulin A.V. Kompressionnaya pena dlya nuzhd pozharnykh podrazdeleniy [Compression foam for the needs of fire departments]: monograph. Minsk: University of Civil Protection, 2019. 224 p. (rus). ISBN: 978-985-590-050-5.

Kamluk A.N., Likhomanov A.O., Grachulin A.V. Field testing and extinguishing efficiency comparison of the optimized for higher expansion rates deflector type sprinkler with other foam and foam-water sprinklers. Fire Safety Journal, 2020. Vol. 116. Article 103177. 10 p. DOI: https://doi.org/10.1016/j.firesaf.2020.103177.

Benilov E.S., Cummins C.P., Lee W.T. Why do bubbles in Guinness sink? American Journal of Physics, 2013. Vol. 81, No. 2. Pp. 88–91. DOI: https://doi.org/10.1119/1.4769377.

Liger-Belair G., Cilindre C. How Many CO2 Bubbles in a Glass of Beer? ACS Omega, 2021. Vol. 6, No. 14. Pp. 9672–9679. DOI: https://doi.org/10.1021/acsomega.1c00256.

Mukhamediev Sh.A., Vas'kina V.A. Emul'sii i peny: stroenie, poluchenie, ustoychivost' 1 [Emulsions and foams: structure, production, stability 1]. Masla i zhiry, 2008. No. 10, Pp. 22–26. (rus)

Mukhamediev Sh.A., Vas'kina V.A. Emul'sii i peny: stroenie, poluchenie, ustoychivost' 2 [Emulsions and foams: structure, production, stability 2]. Masla i zhiry, 2008. No. 11, Pp. 2–5. (rus)

Kamluk A.N., Likhomanov A.O., Govor E.G., Grachulin A.V. Mathematical model of foam expansion rate generated in sprinklers. Magazine of Civil Engineering, 2024. Vol. 17 (7). Article 13102. 11 p. DOI: https://doi.org/10.34910/MCE.131.2.

Krotov V.V. Teoriya sinerezisa pen i kontsentrirovannykh emul'siy. 1. Lokal'naya kratnost' poliedricheskikh dispersnykh sistem [Syneresis theory of foams and concentrated emulsions. 1. Local multiplicity of polyhedral disperse systems]. Colloid Journal, 1980. Vol. 42, No. 6. Pp. 1081–1091. (rus)

Chan D.Kh., Kamlyuk A.N., Likhomanov A.O., Grachulin A.V., Platonov A.S., Titovets A.F. Otsenka diametra puzyr'kov i skorosti potoka penoobrazuyushchey smesi dlya ikh obrazovaniya na setke peno-generiruyushchikh ustroystv [Evaluation of the bubble’s diameter and the blowing speed of the air-me-chanical foam forming bubbles on the screen of the foam generators]. Journal of Civil Protection, 2022. Vol. 6, No. 1. Pp. 84–94. (rus). DOI: https://doi.org/10.33408/2519-237X.2022.6-1.84. EDN: https://elibrary.ru/QAEHWG.

Kamlyuk A.N. Kolichestvennoe opisanie mekhanizmov obrazovaniya vozdushno-mekhanicheskoy peny nizkoy kratnosti dlya nuzhd pozharotusheniya [Quantitative description of the mechanisms of formation of low multiplicity air-mechanical foam for firefighting needs]. Journal of Civil Protection, 2024. Vol. 8, No. 3. Pp. 276–288. (rus). DOI: https://doi.org/10.33408/2519-237X.2024.8-3.276. EDN: https://elibrary.ru/EJOWFD.

Salkin L., Schmit A., Panizza P., Courbin L. Generating soap bubbles by blowing on soap films. Physical Review Letters, 2016. Vol. 116, No. 7. Article 077801. 5 p. DOI: https://doi.org/10.1103/PhysRevLett.116.077801.

Bychkov A.I. O sryve penoobrazovaniya na setkakh [About foaming disruption on the nets]. Proc. of VII All-Union scientific-practical conf. «Gorenie i problemy tusheniya pozharov»: Section «Teplomassoob-men v usloviyakh pozhara». Moscow: FGBU VNIIPO of EMERCOM of Russia, 1981. Pp. 17–20. (rus)

Kamlyuk A.N., Likhomanov A.O., Titovets A.F., Polochanin N.S., Grachulin A.V. Vliyanie razmerov yacheyki setki i rasstoyaniya ot sopla na dispersnost' peny [Influence of the dimensions of the grid cell and the distance from it to the nozzle of the foam-generating device on the foam dispersion]. Journal of Civil Protection, 2022. Vol. 6, No. 4. Pp. 441–450. (rus). DOI: https://doi.org/10.33408/2519-237X.2022.6-4.441. EDN: https://elibrary.ru/GNBQTD.

Kann K.B. Kapillyarnaya gidrodinamika pen [Capillary hydrodynamics of foams]. Novosibirsk: Nauka, 1989. 167 p. (rus). ISBN: 5-02-028655-9.

Kamlyuk A.N., Likhomanov A.O., Govor E.G. Zavisimost' ob"emnoy ustoychivosti nizkokratnykh pen ot ikh kratnosti [Dependence of the volume stability on the expansion rate of low-expansion foam]. Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2024. Vol. 69, No. 4. Pp. 194–205. (rus). DOI: https://doi.org/10.29235/1561-8358-2024-69-3-194-205. EDN: https://elibrary.ru/SQVQWY.

Downloads


Abstract views: 90
PDF Downloads: 20

Published

2025-02-25

How to Cite

Kamlyuk А. Н. (2025) “Approaches to calculating the expansion, dispersion and stability of low expansion air-mechanical foams”, Journal of Civil Protection, 9(1), pp. 54–65. doi: 10.33408/2519-237X.2025.9-1.54.

Issue

Section

Materials used for emergency prevention and elimination, equipment production

Categories

Most read articles by the same author(s)

1 2 > >>