Modeling of visibility in a room under fire conditions with application of the FDS software complex

Authors

  • Andrey V. Surikov State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus
  • Nikolay S. Leshenyuk State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

DOI:

https://doi.org/10.33408/2519-237X.2018.2-2.147

Keywords:

modeling, visibility, smoke-forming ability, smoke yield, experimental studies

Abstract

Purpose. The article is devoted to comparing the results of visibility measurements in smoke conditions with simulation results in the FDS, as well as the influence of the choice of the specific mass extinction coefficient on the results of modeling the smoke optical properties and the time of the onset of the critical value of visibility loss in fire conditions.

Methods. Modeling the smoke in the room using the computational fluid dynamics model (CFD).

Findings. The performed simulation showed that when calculating the time of loss of visibility in a room during smoke, it depends on the specific extinction coefficient σs, which is used to determine the soot yield Ys in the FDS. The best convergence with the experimental data has the values of Ys, determined with an individual for a particular fire load.

Application field of research. The results can be applied in modeling fires.

Conclusions. It is advisable to use the values of σs for the material individually when calculating Ys. This will improve the accuracy of calculations using the FDS. Determination of the possibility of converting the smoke production factor Dm to Ys by solving the analytical equation makes it possible for the subsequent application of the available data array on the smoke-forming capacity of various materials in modeling the process of changing the visibility in smoke. The lack of consideration of the physical model of smoke in assessing visibility under fire conditions and, accordingly, in determining the time of onset of loss of visibility, implemented in engineering calculations of fire risks, may lead to incorrect determination of this parameter. The use of the value of σs for the materials in calculating fire risks allows obtaining more accurate values.

Author Biographies

Andrey V. Surikov, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

Chair of Organization of Service, Supervision and Law Support, Head of Chair

Nikolay S. Leshenyuk, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; ul. Mashinostroiteley, 25, Minsk, 220118, Belarus

Chair of Natural Sciences, Professor; Grand PhD in Physical and Mathematical Sciences, Professor

References

Fire and explosion hazard of substances and materials. Nomenclature of indices and methods of their determination. Interstate Standard 12.1.044-90. Affirmed 12.12.1989. Minsk: Minsktipproekt, 1990. Рр 74–76. (rus)

NIST Special Publication 1019. Fire Dynamics Simulator (Sixth Edition). User’s Guide. NIST, 2017. 339 р.

Rabota v programmnom komplekse FireCat. Biblioteka reaktsiy i poverkhnostey goreniya v PyroSim. Redakcia 4 [Work in the FireCat software package. Library of reactions and combustion surfaces in PyroSim. Revision 4], available at: https://pyrosim.ru/polevaya-model-pozhara. (accessed: November, 30, 2017) (rus)

Surikov A.V. Issledovanie protsessa dymoobrazovaniya s primeneniem CFD-modeli [Research of smoke generation with CFD-models]. Chrezvychaynye situatsii: obrazovanie i nauka. 2014. No. 1 (9). Pp. 34–40. (rus)

Mulholland G.W., Croarkin C. Specific extinction coefficient of flame generated smoke. Fire and Materials. 2000. Vol. 24. No. 5, Pp.227–230.

Surikov A.V., Leshenyuk N.S., Kuntsevich B.F. Gorobets V.A. Optoelectronic system to increase visibility in a smoky environment. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus'. 2014. No. 2 (20). Pp. 4–12. (rus)

Landsberg G.C. Optika. Moscow: Nauka, 1976. 928 p. (rus)

Zotov Y.C. Protsess zadymleniya pomeshcheniy pri pozhare i razrabotka metoda rascheta neobkhodimogo vremeni evakuatsii lyudey [The process of smoke pollution in a fire and the development of a method for calculating the necessary time for evacuation of people]: PhD. tech. sci. diss. Moscow, 1989. 273 p. (rus)

Jin Т. Visibility and Human Behavior in Fire Smoke. SFPE Handbook of Fire Protection Engineering. 3rd edition. Quincy, Massachusetts: National Fire Protection Association, 2002. Section 2, Chapter 4. Pp. 42–53.

Mulholland G.W. Smoke Production and Properties. SFPE Handbook of Fire Protection Engineering. 3rd edition. National Fire Protection Association, Quincy, Massachusetts. Section 2, Chapter 13. Pp. 258–268.

Widmann J.F., Duchez1 J., Yang J.C., Conny J.M., Mulholland G.W. Measurement of the optical extinction coefficient of combustion-generated aerosol. Aerosol Science. 2005. No. 36. Pp. 283–289.

Mulholland G.W., Johnsson E.L., Fernandez M.G., Shear D.A. Design and Testing of a New Smoke Concentration Meter. Fire and Materials. 2000. Vol.24. Pp. 231–243.

Fire Dynamics Simulator Mesh Size Calculator, available at: https://koverholt.com/fds-mesh-size-calc (accessed: November, 20, 2017).

Fire safety. General requirements: Interstate Standard 12.1.004-91. Affirmed 14.06.1991. Moscow: Izdatel'stvo standartov, 1991. 88 p. (rus)

Sharovar F.I. Metody rannego obnarujenia zagoraniy. Moscow: Stroyizdat, 1988. 335 p. (rus)

Glenn P. Forney Smokeview (Version 6). A Tool for Visualizing Fire Dynamics Simulation Data Volume III: Verification Guide. National Institute of Standards and Technology Special Publication 1017-3, 2013. 101 р.

Rekomendatsii po ispol'zovaniyu programmy FDS s primeneniem programm PyroSim2012, SmokeView i «SITIS: Flammer 3.00» [Recommendations on using the FDS program with PyroSim2012, SmokeView and «CITIS: Flummer 3.00»], available at: http://old.sitis.ru/doc (accessed: November, 10, 2017). (rus)

Leonovich A.A., Ani E.V., Grigoryev G.N., Kulev D.H. Additivnost' koeffitsienta dymoobrazovaniya kompozitsionnykh materialov [Additivity of the coefficient of smoke formation of composite materials]. Proc. Sci. Conf. Bezopasnost ludey pri pojare. Мoscow: VNIIPO, 1984. Pp. 97–100. (rus)

Koshmarov Y.A. Prognozirovanie opasnykh faktorov pozhara v pomeshchenii: uchebnoe posobie [Forecasting of dangerous fire factors in the room: a tutorial]. Мoscow: Akademiya GPS MVD Rossii, 2000. 118 p. (rus)

Surikov A.V., Leshenyuk N.S., Petuhov V.O. Kolichestvennye kharakteristiki opticheskogo izlucheniya, prokhodyashchego cherez zadymlennuyu sredu [Quantitative characteristics of optical radiation passing through a smoke]. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus'. 2011. No 2 (14). Pp. 14–18. (rus)

Rukovodstvo pol'zovatelya PyroSim 2014 [User Manual PyroSim 2014], available at: https://pyrosim.ru/polevaya-model-pozhara (accessed: December, 10, 2017). (rus)

Downloads


Abstract views: 350
PDF Downloads: 166

Published

2018-05-01

How to Cite

Surikov А. and Leshenyuk Н. (2018) “Modeling of visibility in a room under fire conditions with application of the FDS software complex”, Journal of Civil Protection, 2(2), pp. 147–160. doi: 10.33408/2519-237X.2018.2-2.147.