Determination of simulation parameters values and output data interpretation in FDS during calculating visibility in smoke conditions
DOI:
https://doi.org/10.33408/2519-237X.2018.2-3.308Keywords:
modeling, visibility, smoke-forming ability, soot yield, visibility factor, specific extinction coefficientAbstract
Purpose. The article is devoted to the development of methodological approaches to increasing the accuracy of visibility calculations for smoke in a room with the use of computational fluid dynamics model.
Methods. Experimental and analytical justification of the values of smoke modeling parameters.
Findings. The analysis of the method for determining the values of the calculated parameters used in the modeling of fires in the FDS software for calculating the dynamics of smoke in the room is analyzed. It is shown that the existing approaches to the determination of the values of the calculated parameters of smoke formation are valid only with complete combustion of materials under the conditions of standard tests for the smoke-forming ability. To take into account the incompleteness of combustion of materials, an analysis of the experimental data on the residue of the mass of materials, for which the smoke production coefficient was determined, was carried out.
Application field of research. The results can be applied in modeling of fires.
Conclusions. When determining the specific soot yield in the case of experimental data for a particular material, it is advisable to use the indicated values in the calculations, since they are usually higher than those determined according to the analytical method. The application of the analytical method is correct with complete combustion of the test sample. For a more correct determination of the soot yield, it is advisable to use coefficients that take into account the incomplete combustion of materials in determining the smoke production coefficients. Some values of the coefficients are given in this article. When simulating fires in FDS for the conversion of the smoke factor to the soot yield, it is advisable to apply the values of the smoke generation factor taking into account the test protocols for specific materials for the combustion regime. The data array obtained on the basis of the calculations of the value of the factor of visibility C for various materials and painted surfaces can be used to develop compensatory measures aimed at increasing the onset of critical values of the optical density of smoke in time when calculating the necessary evacuation time. When interpreting the output data for calculating the ultimate visibility under fire conditions using a computational fluid dynamics model, it is necessary to take into account the value of the integrated light extinction coefficient over the entire calculated optical transmission length. The adoption of local values of the coefficient is less correct.
References
Litvintsev K.Yu., Dekterev A.A., Gavrilov A.A., Kharlamov E.B. Razrabotka programmy dlya modelirovaniya pozharov v zdaniyakh soglasno metodike opredeleniya raschetnykh velichin pozharnogo riska [Development of a program for modeling fires in buildings in accordance with the method for determining the calculated values of fire risk]. Proc. 9th All-Russian Conf. with international participation «Fuel burning: theory, experiment, applications», Novosibirsk, November 16–18, 2015. Kutateladze Institute of Thermophysics, Siberian Branch of the RAS, available at: http://www.itp.nsc.ru/conferences/gt-2015/Files/D1_S1-5.pdf (accessed: May 20, 2018). (rus)
McGrattan K., Hostikka S., McDermott R., Floyd J., Vanella M., Weinschenk C., Overholt K. Fire Dynamics Simulator. User’s Guide. 6th ed. NIST, 2017. 339 р.
Estestvennoe i iskusstvennoe osveshchenie. Stroitel'nye normy proektirovaniya: TKP 45-2.04-153-2009 (02250) [Natural and artificial lighting. Building Design Standards]. Affirmed 14.10.2009 (with cancellation in the territory of the Republic of Belarus SNB 2.04.05-98). Minsk: Stroytekhnorm, 2010. 104 р. (rus)
Pozharnaya bezopasnost'. Obshchie trebovaniya: GOST 12.1.004 – 91 [Fire safety. General requirement]. Affirmed 14.06.1991. Moscow: Gosudarstvennyy komitet SSSR po upravleniyu kachestvom produktsii i standartam: Izdatel'stvo standartov, 1991. 88 р. (Sistema standartov bezopasnosti truda). (rus)
Koshmarov Yu.A. Prognozirovanie opasnykh faktorov pozhara v pomeshchenii: tutorial. Moscow: Akademiya GPS MVD Rossii, 2000. 118 р. (rus)
Jin Т. Visibility and Human Behavior in Fire Smoke. SFPE Handbook of Fire Protection Engineering ed.: P.J. DiNenno et al. – 4th ed. – Quincy, Mass.: National Fire Protection Association. 2008. Ch. 2–4. Рр. 37–54.
Overholt K.J., Floyd J.E., Ezekoye O.A. Computational Modeling and Validation of Aerosol Deposition in Ventilation Ducts. Fire Technology. 2016. Vol. 52. Рр. 149–166.
Mulholland G.W., Croarkin C. Specific extinction coefficient of flame generated smoke. Fire and Materials. 2000. Vol. 24, No.5. Pр. 227–230.
Surikov A.V., Leshenyuk N.S. Modeling of visibility in a room under fire conditions with application of the FDS software complex. Vestnik Universiteta grazhdanskoy zashchity MChS Belarusi. 2018. Vol. 2, No. 2. Pp. 147–160. (rus)
Pozharovzryvobezopasnost' veshchestv i materialov. Nomenklatura pokazateley i metody ikh opredeleniya: GOST 12.1.044 – 90 [Fire and explosion safety of substances and materials. Nomenclature of indicators and methods for their determination]. Affirmed 12.12.89. Moscow: Gosudarstvennyy komitet SSSR po upravleniyu kachestvom produktsii i standartam: Izdatel'stvo standartov, 1990. Рр. 74–76. (Sistema standartov bezopasnosti truda). (rus)
Kar'kin I.N. Rabota v programmnom komplekse FireCat. Biblioteka reaktsiy i poverkhnostey goreniya v PyroSim [Work in the FireCat software package. Reaction and combustion surfaces library in PyroSim], availiable at: https://www.pyrosim.ru/download/Firecat_FDS_fireload_lib.pdf. (accessed: November, 30, 2017). (rus)
Surikov A.V. Issledovanie protsessa dymoobrazovaniya s primeneniem CFD-modeli [Research of smoke generation with CFD-models]. Chrezvichaynie situacii: obrazovanie i nauka. 2014. No. 1 (9). Pp. 34–40. (rus)
Kar'kin I.N., Levintovskaya G.V. Metodika rascheta OFP polevym metodom [Method for calculating the DFF field method]. Ekaterinburg: Sitis, 2007. – 11 р. (rus)
Zotov Yu.S. Protsess zadymleniya pomeshcheniy pri pozhare i razrabotka metoda rascheta neobkhodimogo vremeni evakuatsii lyudey [The process of smoke pollution in a fire and the development of a method for calculating the necessary time for evacuation of people]. PhD tech. sci. diss: 05.26.01. Moscow, 1989. 273 p. (rus)
Tsvirkun S.V., Berezovskiy A.I., Berezovskaya Yu.V. Raschet vremeni evakuatsii lyudey s uchebnoy auditorii pri pozhare [Calculation of the time of evacuation of people from the classroom in case of fire] Naukoviy Vіsnik budіvnitstva. 2015. No. 1 (79). Pp. 214–219. (rus)
Abashkin A.A., Karpov A.V., Ushakov D.V., Fomin M.V., Giletich A.N., Komkov P.M. Posobie po primeneniyu «Metodiki opredeleniya raschetnykh velichin pozharnogo riska v zdaniyakh, sooruzheniyakh i stroeniyakh razlichnykh klassov funktsional'noy pozharnoy opasnosti» [Manual on the application of «Methods for determining the calculated values of fire risk in buildings, structures and structures of various classes of functional fire danger»]. Moscow: VNIIPO, 2014. – 226 р. (rus)
Kathryn M.B., Mulholland G.W. Generation and Transport of Smoke Components. Fire Technology. 2004. Vol. 40. Pр. 149–176.
Mowrer F.W. Enclosure Smoke Filling and Fire-Generated Environmental Conditions. SFPE Handbook of Fire Protection Engineering. Ed.: P.J. DiNenno et al. 4th ed. Quincy, Mass. National Fire Protection Association. 2008. Ch. 3–9. Рр. 247–271.
Trushkin D.V. Sovershenstvovanie metodologii opredeleniya pozharnoy opasnosti stroitel'nykh materialov [Perfection of the methodology for determining the fire hazard of building materials]. Phd. tech. sci. diss: 05.26.03. Moscow, 2004. 226 p. (rus)
Kochkin A.Yu. Prognozirovanie i kontrol' ekologicheskoy opasnosti dymov [Forecasting and controlling the environmental hazards of fumes]. PhD. tech. sci. diss. Synopsis. Bratck., 2006. 160 p. (rus)
Kar'kin I.N., Kontar' N.A., Grachev V.Yu. Rekomendatsii po ispol'zovaniyu programmy FDS s primeneniem programm PyroSim2012, SmokeView i «SITIS: Flammer 3.00» [Recommendations for using the FDS program using the PyroSim2012, SmokeView and CITIS: Flammer 3.00 software]. Ekaterinburg: Sitis, 2009. 65 p. (rus)
Surikov A.V., Leshenyuk N.S., Petukhov V.O. Kolichestvennye kharakteristiki opticheskogo izlucheniya, prokhodyashchego cherez zadymlennuyu sredu [Quantitative characteristics of optical radiation, passing through the environment]. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus'. 2011. No. 2 (14). Pp. 14–18. (rus)
Kategorirovanie pomeshcheniy, zdaniy i naruzhnykh ustanovok po vzryvopozharnoy i pozharnoy opasnosti: TKP 474-2013 (02300) [The categorization of premises, buildings and external installations for explosion and fire hazard]. Affirmed 29.01.2013 (with cancellation in the territory of the Republic of Belarus NPB 5-2005). Minsk: MChS Respubliki Belarus', 2013. 57 р.
Ob utverzhdenii metodiki opredeleniya raschetnykh velichin pozharnogo riska v zdaniyakh, sooruzheniyakh i stroeniyakh razlichnykh klassov funktsional'noy pozharnoy opasnosti [On the approval of the methodology for determining the calculated values of fire risk in buildings, structures and structures of various classes of functional fire danger], availiable at: http://www.consultant.ru/document/cons_doc_LAW_90833 (accessed: March 10, 2018). (rus)
Ukazaniya po proektirovaniyu tsvetovoy otdelki inter'erov proizvodstvennykh zdaniy promyshlennykh predpriyatiy: SN 181-70 [Instructions on the design of the color finishing of the interiors of industrial buildings of industrial enterprises: Building codes 181-70]. Affirmed 01.10.1970. Moscow: Stroyizdat, 1972. 76 р. (rus)
Published
How to Cite
License
Copyright (c) 2018 Surikov A.V., Leshenyuk N.S.CC «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0