Calibration of the model of the geoinformation system «Extremum» for estimating earthquake losses

Authors

DOI:

https://doi.org/10.33408/2519-237X.2021.5-4.427

Keywords:

automated information and control system, GIS «Extremum», reliability of operational estimates of losses, Kaliningrad earthquake, macroseismic field

Abstract

Purpose. Updating the information content of the automated information and control system (AICS) of the unified state system for the prevention and elimination of emergency situations (RSChS) of the Ministry of Emergency Situations of Russia to improve the reliability of seismic risk assessments and operational estimates of earthquake losses in order to ensure the safety of the population.

Methods. The study of the influence of the features of seismic intensity attenuation on the estimates of earthquake losses in the Eastern Baltic territories was carried out by calibrating the parameters of the macroseismic field and simulation modeling using the system «Extremum».

Findings. Examples of successful use of the results of the calibration of the macroseismic field for a retrospective assessment of the consequences of the Kaliningrad earthquake on September 21, 2004 and the prediction of consequences in the case of a stronger event with Mmax = 5.0–5.5 in the Eastern Baltic area are given. Acceptable estimates of the modeling error have been obtained for the case of operational assessment of losses from strong earthquakes. The effectiveness of periodic calibration of models of the system «Extremum» using data collected by means of AICS and obtained in the research of scientific organizations of the Russian Academy of Sciences, including the Federal Research Center «Unified Geophysical Service of the Russian Academy of Sciences» is shown.

Application field of research. The obtained results are of great practical importance and can be used in the assessment of seismic risk, as well as in the operational assessment of the consequences of earthquakes to increase the reliability of the predicted parameters of the possible situation, which affects the speed of decision-making and the effectiveness of rescuers' actions.

Author Biographies

Nina I. Frolova, Sergeev Institute of Environmental Geoscience of the Russian Academy of Sciences; 101000, Russia, Moscow, Ulanskiy lane, 13, bld. 2

Leading Researcher; PhD in Physical and Mathematical Sciences

Irina P. Gabsatarova, Geophysical Survey of the Russian Academy of Sciences; 249035, Russia, Kaluga region, Obninsk, Lenin av., 189

Leading Researcher; PhD in Physical and Mathematical Sciences

Sergey P. Sushchev, Bauman Moscow State Technical University; 105005, Russia, Moscow, 2nd Baumanskaya str., d. 5/1

Chair of Ecology and Industrial Safety, Professor; Grand PhD in Technical Sciences, Professor

Natal'ya S. Malaeva, Sergeev Institute of Environmental Geoscience of the Russian Academy of Sciences; 101000, Russia, Moscow, Ulanskiy lane, 13, bld. 2

Engineer

References

Larionov V.I., Frolova N.I., Ugarov A.N., Sushchev S.P., Kozlov M.A., Malaeva N.A., Barskaya T.V. Otsenka seysmicheskogo riska [Seismic Risk Assessment]. Geoekologiya. Inzheneraya geologiya, gidrogeologiya, geokriologiya, 2017. No. 2. Pp. 22–37. (rus)

Sushchev S.P., Larionov V.I., Frolova N.I. Seismic Risk Assessment and Management with Extremum System Application. Proc. XV Intern. scientific-practical conf. «Problemy zashchity naseleniya i territoriy ot chrezvychaynykh situatsiy», Moscow, May 18-20. Moscow: FSBI VNII GOChS (FC), 2010. Pp. 327–345. Available at: https://elibrary.ru/item.asp?id=15549580&pff=1 (accessed: August 02, 2021).

Frolova N.I., Bonnin J., Gabsatarova I.P., Ugarov A.N., Barskaya T.V. Analiz faktorov, vliyayushchikh na nadezhnost' operativnykh otsenok poter' ot zemletryaseniy [Analysis of factors affecting the reliability of operative loss estimates due to earthquakes]. Proc. XVIII annual conf. «Sergeevskie chteniya. Inzhenernaya geologiya i geoekologiya. Fundamental'nye problemy i prikladnye zadachi», Moscow, March 24–25, 2016. Moscow: RUDN University, 2016. Pp. 230–234. Available at: https://elibrary.ru/item.asp?id=25885351&pff=1 (accessed: August 02, 2021).

Frolova N.I., Ugarov A.N. Baza znaniy o sil'nykh zemletryaseniyakh kak instrument povysheniya nadezhnosti operativnykh otsenok poter' [Knowledge base about past earthquakes consequences as a tool to increase the reliability of near real time loss estimation]. Geoekologiya. Inzheneraya geologiya, gidrogeologiya, geokriologiya, 2018. No. 6. Pp. 3–20. (rus). DOI: https://www.doi.org/10.1134/S0869780318060017.

Frolova N.I., Gabsatarova I.P., Petrova N.V., Ugarov A.N., Malaeva N.S. Vliyanie osobennostey zatukhaniya seysmicheskoy intensivnosti na nadezhnost' operativnykh otsenok poter' ot zemletryaseniy [Influence of shaking intensity attenuation peculiarities on reliability of earthquake loss estimation in emergency mode]. Geoekologiya. Inzheneraya geologiya, gidrogeologiya, geokriologiya, 2019. No. 5. Pp. 23–37. (rus). DOI: https://www.doi.org/10.31857/S0869-78092019523-37.

Rogozhin E.A., Ovsyuchenko A.N., Gorbatikov A.V., Lutikov A.I., Novikov S.S., Marakhanov A.V., Stepanova M.Yu., Andreeva N.V., Lar'kov A.S. Detal'naya otsenka seysmicheskoy opasnosti territorii Kaliningrada i tektonicheskiy analiz zemletryaseniy 2004 g. [Detailed seismic hazard assessment of the Kaliningrad territory and tectonic analysis of the earthquakes occured in 2004]. Engineering survey, 2014. No. 12. Pp. 26–38. Available at: http://www.geomark.ru/journals_list/zhurnal-inzhenernye-izyskaniya-122014/ (accessed: August 02, 2021). (rus)

Aptikaev F.F., Aleshin A.S., Assinovskaya B.A., Nikonov A.A., Pogrebchenko V.V., Erteleva O.O. Makroseysmicheskie proyavleniya Kaliningradskogo zemletryaseniya 2004 g. [Macroseismic evidences of the 2004 Kaliningrad earthquake]. GeoRisk, 2019. Vol. XIII, No. 3. Pp. 40–59. (rus). DOI: https://www.doi.org/10.25296/1997-8669-2019-13-3-40-59.

Drobiz M.V. Otsenka geoekologicheskogo riska seysmoopasnosti stroitel'stva podzemnogo khranilishcha gaza [The goecological seismic risk associated with the construction of an underground gas storage in the Kaliningrad region]. IKBFU's Vestnik. Natural and Medical Sciences, 2014. Iss. 1. P. 65–72. Available at: https://journals.kantiana.ru/eng/vestnik/1678/4778/ (accessed: August 02, 2021). (rus)

Tatevossian R.E., Mokrushina N.G. O prirode seysmicheskikh yavleniy v platformennykh oblastyakh na primere Belorussii [On the origins of seismic phenomena in platform areas: a case study of Belarus]. Voprosy inzhenernoi seismologii, 2018. Vol. 45, No. 3. Pp. 27–44. (rus). DOI: https://www.doi.org/10.21455/VIS2018.3-3.

Reisner G.I., Ioganson L.I. Sovremennye endogennye rezhimy Severnoy Evrazii [Modern endogenous regimes of the Northern Eurasia]. Geomorphologiya, 1996. No. 2. Pp. 9–19. (rus)

Ulomov V.I., Akatova K.N., Medvedeva N.S. Estimation of seismic hazard in the Kaliningrad region. Izvestiya, Physics of the Solid Earth, 2008. Vol. 44, No. 9. Pp. 691–705. DOI: https://www.doi.org/10.1134/S1069351308090012.

Koff G.L., Kotlov V.F., Zaigrin I.V. Bogomolova T.V., Chesnokova I.V. Faktory seysmicheskogo riska pri Kaliningradskikh zemletryaseniyakh [Seismic risk factors during Kaliningrad earthquakes]. Kaliningradskoe zemletryasenie 21 sentyabrya 2004 goda [Kaliningrad earthquake on September 21, 2004]. Saint Petersburg: Publishing house VSEGEI, 2009. Pp. 75–79.

Garetsky R.G. Osobennosti tektoniki i geodinamiki Vostochno-Evropeyskoy platformy [Tectonic and geodynamic peculiarities of of the East European platform]. Litasfera, 2007. No. 2 (27). Pp. 3–13. Available at: http://lithosphere.by/category/2007г-№27/page/6/ (accessed: August 2, 2021). (rus)

Assinovskaya B.A., Ovsov M.K. Seismotectonic position of the Kaliningrad September 21, 2004, earthquake. Izvestiya, Physics of the Solid Earth, 2008. Vol. 44, No. 9. Pp. 717–727. DOI: https://www.doi.org/10.1134/S1069351308090036.

Petrova N.V., Dyagilev R.A., Gabsatarova I.P. Osobennosti zatukhaniya seysmicheskogo effekta zemletryaseniy Russkoy platformy i Urala [Features of seismic effect attenuation of the Russian platform and Ural earthquakes]. Voprosy inzhenernoi seismologii, 2020. Vol. 47, No. 4. Pp. 5–25. (rus). DOI: https://www.doi.org/10.21455/VIS2020.4-1.

Nikonov A.A. Osmussaarskoe zemletryasenie 25.10.1976 g.: makroseysmika, seysmotektonika, mekhanizm ochaga [The Osmussaar earthquake on October 25, 1976: macroseismic survey, seismotectonics, source mechanism]. Fizika zemli, 2002. No. 8. Pp. 74–88.

Gabsatarova I.P., Chepkunas L.S., Babkova E.A., Malyanova L.S., Ryzhikova M.I. Kaliningradskie zemletryaseniya 21 sentyabrya 2004 g. s Mw = 4.6 i 4.8, I0 = 6 i 6–7 (Zapad Rossii) [Kaliningrad earthquakes on September 21, 2004 with Mw = 4.6 and 4.8, I0 = 6 and 6–7 (West of Russia)]. Earthquakes of the Northern Eurasia. Obninsk: GS RAS, 2010. Pp. 343–363. (rus)

Aronov A.G., Seroglazov R.R., Aronova T.I. Makroseysmicheskie effekty na territorii Belarusi ot Kaliningradskikh zemletryaseniy 21 sentyabrya 2004 g. [Macroseismic effects from the Kaliningrad earthquakes on September 21, 2004 on the territory of Belarus]. Kaliningradskoe zemletryasenie 21 sentyabrya 2004 goda [Kaliningrad earthquake on September 21, 2004]. Saint Petersburg: Publishing house VSEGEI, 2009. Pp. 109–115. (rus)

Shebalin N.V. Opornye zemletryaseniya i uravneniya makroseysmicheskogo polya [Reference earthquakes and macroseismic field equations]. Novyy Katalog sil'nykh zemletryaseniy na territorii SSSR s drevneyshikh vremen do 1975 g. [New catalogue of strong earthquakes for the USSR territory from ancient times till 1975]. Moscow: Nauka, 1977. Pp. 20–30. (rus)

Assinovskaya B.A., Nikonov A.A. Felt earthquakes of the XXth century in the Eastern Baltic shield. Proc. XVI General Assembly of the European Seismological Commission, Tel-Aviv, Israel, August 23–28, 1998. Pp. 10.

Frolova N.I., Gabsatarova I.P., Ugarov A.N., Malaeva N.S. Kalibrovka modeli zatukhaniya seysmicheskoy intensivnosti na primere zemletryaseniy v Albanii [Calibration of seismic intensity attenuation model by the example of earthquakes in Albania] Geoekologiya. Inzheneraya geologiya, gidrogeologiya, geokriologiya, 2020. No. 5. Pp. 62–77. (rus). DOI: https://www.doi.org/10.31857/S0869780920050033.

Shebalin N.V. Metody ispol'zovaniya inzhenerno-seysmologicheskikh dannykh pri seysmicheskom rayonirovanii [Procedures of engineering seismological data application for seismic zoning]. Seysmicheskoe rayonirovanie SSSR [Seismic zoning of the USSR]. Moscow: Nauka, 1968. Pp. 95–121. (rus)

Gregersen S., Wiejacz P., Dębski W., Domanski B., Assinovskaya B., Guterch B., Mäntyniemi P., Nikulin V.G., Pacesa A., Puura V., Aronov A.G., Aronova T.I., Grünthal G., Husebye E.S., Sliaupa S. The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth and Planetary Interiors, 2007. Vol. 164, Iss. 1–2. Pp. 63–74. DOI: https://www.doi.org/10.1016/j.pepi.2007.06.005.

Ayzberg R.E., Aronov A.G., Aronova T.I., Boyarkin S.A., et al. Seysmogeneriruyushchie struktury i zony vozniknoveniya opasnykh zemletryaseniy [Seismogenerating structures and zones of occurrence of dangerous earthquakes]. Seysmotektonika plit drevnikh platform v oblasti chetvertichnogo oledeneniya [Seismotectonics of ancient platforms plates in the area of Quaternary glaciation]: ed. by R.G. Garetskiy, S.A. Nesmeyanov. Moscow: Kniga i biznes, 2009. Chapter 7. Pp. 77–87.

Nesmeyanov S.A., Lutikov A.I., Voejkova O.A., Dontsova G. Yu. Seysmichnost' severo-zapadnoy chasti Russkoy plity i ee glyatsioizostaticheskaya priroda [Seismicity of the northwestern part of the Russian plate and its glacioisostatic nature]. Geoekologiya. Inzheneraya geologiya, gidrogeologiya, geokriologiya, 2011. No. 2. Pp. 141-156. Available at: https://elibrary.ru/item.asp?id=16374423 (accessed: August 2, 2021). (rus)

Murashko N.I., Andreenko A.V., Stankevich V.M. O sovershenstvovanii sistemy monitoringa i prognozirovaniya chrezvychaynykh situatsiy [Improving the system of emergency monitoring and predicting]. Journal of Civil Protection, 2019. Vol. 3, No. 1. Pp. 90–96. (rus). DOI: https://www.doi.org/10.33408/2519-237X.2019.3-1.90.

Yurzhits A.M., Tocheny N.N., Chumila E.A. Primenenie geoinformatsionnykh sistem v informatsionno-analiticheskoy deyatel'nosti MChS Respubliki Belarus' [Application of geoinformation systems in the information and analytical activities of the Ministry of Emergency Situations of the Republic of Belarus]. Journal of Civil Protection, 2018. Vol. 2, No. 3. Pp. 410–417. (rus). DOI: https://www.doi.org/10.33408/2519-237X.2018.2-3.410.

Fakhruddin B., Chu E., Li G., Frolova N. et al. Next Generation Disaster Data Infrastructure. A study report of the CODATA Task Group on Linked Open Data for Global Disaster Risk Research, September 12, 2019, Paris. 26 p. DOI: https://www.doi.org/10.5281/zenodo.3406127.

Downloads


Abstract views: 234
PDF Downloads: 162

Published

2021-11-22

How to Cite

Frolova Н. И., Gabsatarova И. П., Sushchev С. П. and Malaeva Н. С. (2021) “Calibration of the model of the geoinformation system «Extremum» for estimating earthquake losses”, Journal of Civil Protection, 5(4), pp. 427–446. doi: 10.33408/2519-237X.2021.5-4.427.