Fire visibility calculation method

Authors

  • Andrey V. Surikov State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, ul. Mashinostroiteley, 25 https://orcid.org/0000-0002-3659-7297
  • Nikolay S. Leshenyuk State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, ul. Mashinostroiteley, 25 https://orcid.org/0000-0002-1660-9086

DOI:

https://doi.org/10.33408/2519-237X.2019.3-4.412

Keywords:

modeling, visibility, smoke generating ability, specific smoke output, visibility factor, specific extinction index, illumination, reflection coefficient

Abstract

Purpose. The development of a methodology for calculating visibility at a fire, based on a mathematical model of the propagation of optical radiation through a scattering medium and supplemented by taking into account modeling parameters.

Methods. Simulation of smoke dynamics in a fire.

Findings. A method for calculating the visibility of a fire based on a mathematical model of the propagation of optical radiation through a scattering medium and supplemented by taking into account the color of the interior of the premises, comprehensive assessment of the smoke-generating ability of the fire load and its share of combustion is presented. A methodology for determining the values and application of parameters for modeling visibility at a fire is described.

Application field of research. The results can be applied in fire modeling.

Author Biographies

Andrey V. Surikov, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, ul. Mashinostroiteley, 25

Chair of Organization of Service, Supervision and Law Support, Head of Chair

Nikolay S. Leshenyuk, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, ul. Mashinostroiteley, 25

Chair of Natural Sciences, Professor; Grand PhD in Physical and Mathematical Sciences, Professor

References

Zotov Yu.S. Protsess zadymleniya pomeshcheniy pri pozhare i razrabotka metoda neobkhodimogo vremeni evakuatsii lyudey [The process of smoke in a fire and the development of a method for the necessary time for evacuation of people]: PhD tech. sci. diss.: 05.26.01. Moscow, 1989. 273 p. (rus)

Serebrennikov D.S., Litvincev K.Yu. Obzor modeley rasprostraneniya dyma I opredeleniya dalynosti vidimisti [Models of smoke propagation and determination of range of visibility]. Technology of technosphere safety, 2011. № 1 (35), availiable at: http://agps-2006.narod.ru/ttb/2011-1/06-01-11.ttb.pdf (accessed: November, 11, 2019).

McGrattan K., Miles S. Modeling Enclose Fires Using Computational Fluid Dynamics (CFD). SFPE Handbook of Fire Protection Engineering. Ed. by P.J. DiNenno [et al.]. 4th ed. Quincy, Massachusetts: National Fire Protection Association, 2008. Ch. 3. Рp. 3229–3247.

Surikov A.V., Leshenyuk N.S. Determination of simulation parameters values and output data interpretation in FDS during calculating visibility in smoke conditions. Journal of Civil Protection, 2018. Vol. 2, No. 3. Pp. 308–319. (rus) DOI: 10.33408/2519-237X.2018.2-3.308.

Leonovich A.A. [et al.]. Additivnost' koeffitsienta dymoobrazovaniya kompozitsionnykh materialov [Additivity of the coefficient of smoke formation of composite materials]. Bezopasnost' lyudey pri pozharakh: collection of proceedings. Moscow, 1984. Pp. 147–160. (rus)

Surikov A.V., Leshenyuk N.S. Modeling of visibility in a room under fire conditions with application of the FDS software complex. Journal of Civil Protection, 2018. Vol. 2, No. 2. Pp. 147–160. (rus) DOI: 10.33408/2519-237X.2018.2-2.147.

Mulholland G.W., Croarkin C. Specific extinction coefficient of flame generated smoke. Fire and Materials, 2000. Vol. 24, No. 5. Pp. 227–230. DOI: 10.1002/1099-1018(200009/10)24:5<227::AID-FAM742>3.0.CO;2-9.

SFPE Handbook of Fire Protection Engineering. Ed. by P.J. DiNenno [et al.]. 4th ed. Quincy, Massachusetts: National Fire Protection Association, 2008. 3396 р.

Downloads


Abstract views: 220
PDF Downloads: 188

Published

2019-11-18

How to Cite

Surikov А. and Leshenyuk Н. (2019) “Fire visibility calculation method”, Journal of Civil Protection, 3(4), pp. 412–419. doi: 10.33408/2519-237X.2019.3-4.412.