Химические стратегии огнезащиты пористых огнеопасных материалов: достижения, применение и экологические соображения

Авторы

  • Ань Туан Ле Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243 https://orcid.org/0000-0002-4171-9949
  • Ань Фан Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243 https://orcid.org/0009-0001-2983-3474
  • Тхи Нгок Ань Нгуен Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243 https://orcid.org/0009-0009-7821-3616
  • Нгок Бич До Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243 https://orcid.org/0009-0005-1423-9260
  • Хыу Хиеу Нгуен Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243 https://orcid.org/0000-0002-6758-8094

DOI:

https://doi.org/10.33408/2519-237X.2025.9-4.455

Ключевые слова:

антипирены, пористые материалы, безгалогенные антипирены, наноматериалы, экологическая безопасность

Аннотация

Цель. Обобщение последних достижений в области огнезащиты пористых горючих материалов, описание ключевых механизмов действия и оценка воздействия различных классов антипиренов на окружающую среду и здоровье. Работа посвящена насущной необходимости достижения баланса между пожарной безопасностью, устойчивым развитием и соблюдением нормативных требований.

Методы. Проведен систематический обзор рецензируемых исследований, нормативных документов, технических отчетов и отраслевых руководств за период с 2018 по 2024 г. Анализ охватывал галогенированные и безгалогеновые антипирены, наноструктурированные системы, биохимические вещества и гибридные подходы. Особое внимание уделялось исследованиям, в которых применялись передовые методы характеризации, конусная калориметрия, термический анализ и оценка жизненного цикла.

Результаты. Галогенированные антипирены остаются эффективными, но их применение все больше ограничивается из-за токсичности и воздействия на окружающую среду. Безгалогеновые альтернативы, такие как полифосфат аммония, диэтилфосфинат алюминия, производные DOPO и системы на основе биологического сырья, демонстрируют многообещающие результаты, особенно в сочетании с наноматериалами или реактивными химическими веществами, для повышения стабильности. Появляются инновационные решения, включая металлорганические каркасы, производные графена и покрытия на основе фитиновой кислоты, для повышения эффективности и снижения экологического следа. Однако масштабируемость, стоимость и долговечность остаются проблемами. Пористость материалов создает определенные проблемы, такие как выщелачивание и газовыделение, что требует тщательного выбора и применения методов. Такие нормативные акты, как регламент REACH Европейского союза и Стокгольмская конвенция о стойких органических загрязнителях, играют решающую роль в обеспечении более безопасного внедрения химических веществ.

Область применения исследований. Разработка более безопасных и устойчивых стратегий противопожарной защиты в эпоху современных материалов и растущей экологической сознательности.

Биографии авторов

Ань Туан Ле, Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243

факультет пожарной безопасности, преподаватель

Ань Фан, Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243

факультет пожарной безопасности, преподаватель

Тхи Нгок Ань Нгуен, Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243

факультет фундаментальных наук и иностранных языков, преподаватель

Нгок Бич До, Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243

факультет фундаментальных наук и иностранных языков, преподаватель

Хыу Хиеу Нгуен, Университет пожарной безопасности Министерства общественной безопасности Социалистической Республики Вьетнам; 11400, Вьетнам, Ханой, Thanh Xuan, Khuat Duy Tien, 243

факультет фундаментальных наук и иностранных языков, преподаватель-исследователь

Библиографические ссылки

Liu S., He M., Qin Q., Liu W., Liao L., Qin S. Expanded properties and applications of porous flameretardant polymers containing graphene and its derivatives. Polymers, 2024. Vol. 16, No. 14. Article 2053. DOI: https://doi.org/10.3390/polym16142053.

Hu J., Pan Y.-T., Zhou K., Song P., Yang R. A new way to improve the fire safety of polyurethane composites with the assistance of metal-organic frameworks. RSC Applied Polymers, 2024. Vol. 2, No. 6. Pp. 996–1012. DOI: https://doi.org/10.1039/D4LP00257A.

Huang Y., Jiang S., Liang R., Sun P., Hai Y., Zhang L. Thermal triggered insulating fireproof layers: A novel fire extinguishing MXene composites coating. Chemical Engineering Journal, 2020. Vol. 391. Article 123621. DOI: https://doi.org/10.1016/j.cej.2019.123621.

Zhang Y., Huang Y., Li M.-C., Zhang S., Zhou W., Mei C., Pan M. Bioinspired, stable adhesive Ti3C2Tx MXene-based coatings towards fire warning, smoke suppression and VOCs removal smart wood. Chemical Engineering Journal, 2023. Vol. 452, part 4. Article 139360. DOI: https://doi.org/10.1016/j.cej.2022.139360.

Cao J., Duan H., Zou J., Zhang J., Ma H. A bio based phosphorus containing co curing agent towards excellent flame retardance and mechanical properties of epoxy resin. Polymer Degradation and Stability, 2021. Vol. 187. Article 109548. DOI: https://doi.org/10.1016/j.polymdegradstab.2021.109548.

Wang D., Wang Y., Li T., Zhang S., Ma P., Shi D., Chen M., Dong W. A bio-based flame-retardant starch based on phytic acid. ACS Sustainable Chemistry & Engineering, 2020. Vol. 8, No. 25. Pp. 10265–10274. DOI: https://doi.org/10.1021/acssuschemeng.0c03277.

Sykam K., Försth M., Sas G., Restás Á., Das O. Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Industrial Crops and Products, 2021. Vol. 164. Article 113349. DOI: https://doi.org/10.1016/j.indcrop.2021.113349.

Lyu P., Hou Y., Hu J., Liu Y., Zhao L., Feng C., Ma Y., Wang Q., Zhang R., Huang W., Ma M. Composites filled with metal organic frameworks and their derivatives: Recent developments in flame retardants. Polymers, 2022. Vol. 14, No. 23. Article 5279. DOI: https://doi.org/10.3390/polym14235279.

Yin Z., Jiang Z., Wu T. The development and application of contemporary phosphorus flame retardants: A review. Frontiers in Materials, 2025. Vol. 12. DOI: https://doi.org/10.3389/fmats.2025.1508000.

Fan T., Yan Z., Huang W., Feng W., Bai Y., Feng C., Wu F. A comprehensive review of contents, toxic effects, metabolisms, and environmental behaviors of brominated and organophosphorus flame retardants. Journal of Hazardous Materials, 2025. Vol. 496. Article 139428. DOI: https://doi.org/10.1016/j.jhazmat.2025.139428.

Kung H.-C., Hsieh Y.-K., Huang B.-W., Cheruiyot N.K., Chang-Chien G.-P. An overview: Organophosphate flame retardants in the atmosphere. Aerosol and Air Quality Research, 2022. Vol. 22. Article 220148. DOI: https://doi.org/10.4209/aaqr.220148.

Hull T.R., Witkowski A., Hollingbery L. Fire retardant action of mineral fillers. Polymer Degradation and Stability, 2011. Vol. 96, No. 8. Pp. 1462–1469. DOI: https://doi.org/10.1016/j.polymdegradstab.2011.05.006.

He S., Gao Y.-Y., Zhao Z.-Y., Huang S.-C., Chen Z.-X., Deng C., Wang Y.-Z. Fully biobased phytic acid–basic amino acid salt for flame retardant polypropylene. ACS Applied Polymer Materials, 2021. Vol. 3, No. 3. Pp. 911–919. DOI: https://doi.org/10.1021/acsapm.0c01356.

Qin W., Zhang R., Fu Y., Chang J. Enhancing flame retardancy of poly(lactic acid) with a novel fully biobased flame retardant synthesized from phytic acid and cytosine. Polymer International, 2024. Vol. 73, No. 3. Pp. 213–222. DOI: https://doi.org/10.1002/pi.6583.

Qin C., Chen J., Ruan S., Liu F., Zhang L. Theoretical study on the effect of oxidation states of phosphorus flame retardants on their mode of action. Polymer Degradation and Stability, 2024. Vol. 223. Article 110735. DOI: https://doi.org/10.1016/j.polymdegradstab.2024.110735.

Understanding REACH. Website of the European Chemicals Agency (ECHA). URL: https://echa.europa.eu/regulations/reach/understanding-reach (accessed: May 5, 2025).

Stockholm Convention on Persistent Organic Pollutants (POPs): website. URL: https://www.pops.int/TheConvention/Overview/tabid/3351/Default.aspx (accessed: May 5, 2025).

Price E.J., Covello J., Paul R., Wnek G.E. Tannic acid based super intumescent coatings for prolonged fire protection of cardboard and wood. SPE Polymers, 2021. Vol. 2, No. 2. Pp. 153–168. DOI: https://doi.org/10.1002/pls2.10043.

Chen Z., Yuan S., Xu X. Synergistic effect of amino-modified CoMOF and APP on improvement of fire safety in rigid polyurethane foam. ACS Omega, 2024. Vol. 10, No. 1. Pp. 892–903. DOI: https://doi.org/10.1021/acsomega.4c08026.

Mastalska-Popławska J., Wójcik Ł., Izak P. Applications of hydrogels with fire retardant properties – a review. Journal of Sol-Gel Science and Technology, 2023. Vol. 105. Pp. 608–624. DOI: https://doi.org/10.1007/s10971-022-05991-x.

de Wit C.A. An overview of brominated flame retardants in the environment. Chemosphere, 2002. Vol. 46, No. 5. Pp. 583–624. DOI: https://doi.org/10.1016/S0045-6535(01)00225-9.

Shan J., Yang Z., Chen G., Hu Y., Luo Y., Dong X., Zheng W., Zhou W. Design and synthesis of free-radical/cationic photosensitive resin applied for 3D printer with liquid crystal display (LCD) irradiation. Polymers, 2020. Vol. 12, No. 6. Article 1346. DOI: https://doi.org/10.3390/polym12061346.

Naik D., Wazarkar K., Sabnis A. UV-curable flame-retardant coatings based on phosphorus and silicon containing oligomers. Journal of Coatings Technology and Research, 2019. Vol. 16. Pp. 733–743. DOI: https://doi.org/10.1007/s11998-018-0151-7.

Pellerin S., Samyn F., Duquesne S., Landry V. Preparation and characterisation of UV-curable flame retardant wood coating containing a phosphorus acrylate monomer. Coatings, 2022. Vol. 12, No. 12. Article 1850. DOI: https://doi.org/10.3390/coatings12121850.

Yang J., Liu H., Cai G., Jin H. Additive manufacturing and influencing factors of lattice structures: A review. Materials, 2025. Vol. 18, No. 7. Article 1397. DOI: https://doi.org/10.3390/ma18071397.

Li X., Xu K., Wu J., Pan Y.-T., Li X., He J., Yang R. Current states and future challenges of multifunctional flame-retardant polyurethane coatings. RSC Applied Interfaces, 2025. Vol. 2, No. 6. Pp. 1527–1536. DOI: https://doi.org/10.1039/D5LF00215J.

Li F.-F. Comprehensive review of recent research advances on flame-retardant coatings for building materials: Chemical ingredients, micromorphology, and processing techniques. Molecules, 2023. Vol. 28, No. 4. Article 1842. DOI: https://doi.org/10.3390/molecules28041842.

Cao Z.-J., Liao W., Wang S.-X., Zhao H.-B., Wang Y.-Z. Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chemical Engineering Journal, 2019. Vol. 361. Pp. 1245–1254. DOI: https://doi.org/10.1016/j.cej.2018.12.176.

Priyadharshini A., Xavier J.R. Recent innovations in graphene-based nanocomposite coatings for enhanced flame retardancy in industrial applications. Polymer Degradation and Stability, 2025. Vol. 240. Article 111479. DOI: https://doi.org/10.1016/j.polymdegradstab.2025.111479.

Chen M.-H., Ma W.-L. A review on the occurrence of organophosphate flame retardants in the aquatic environment in China and implications for risk assessment. Science of the Total Environment, 2021. Vol. 783. Article 147064. DOI: https://doi.org/10.1016/j.scitotenv.2021.147064.

Guo Y., Zuo C., Liu Y., Chen X., Ren Y., Liu X. Construction of a fully bio-based intumescent flame retardant for improving the flame retardancy of polyacrylonitrile. Polymer Degradation and Stability, 2023. Vol. 214. Article 110385. DOI: https://doi.org/10.1016/j.polymdegradstab.2023.110385.

Chen M., Guo Q., Yuan Y., Li A., Lin B., Xiao Y., Xu L., Wang W. Recent advancements of bio-derived flame retardants for polymeric materials. Polymers, 2025. Vol. 17, No. 2. Article 249. DOI: https://doi.org/10.3390/polym17020249.

Liu Y., Zhang A., Cheng Y., Li M., Cui Y., Li Z. Recent advances in biomass phytic acid flame retardants. Polymer Testing, 2023. Vol. 124. Article 108100. DOI: https://doi.org/10.1016/j.polymertesting.2023.108100.

Lei Y., Chan Q.N., Xu L., Lee E.W.M., Lee Y.X., Agarwal V., Yeoh G.H., Wang W. Smart retardant materials for fire alarm systems: Integrating flame retardancy and early detection technologies. Advanced Composites and Hybrid Materials, 2025. Vol. 8. Article 112. DOI: https://doi.org/10.1007/s42114-024-01152-6.

Patel R., Chaudhary M.L., Patel Y.N., Chaudhari K., Gupta R.K. Fire-resistant coatings: advances in flame-retardant technologies, sustainable approaches, and industrial implementation. Polymers, 2025. Vol. 17, No. 13. Article 1814. DOI: https://doi.org/10.3390/polym17131814.

Bisht N., Vishwakarma J., Jaiswal S., Shivani, Patel K.K., Mishra A., Srivastava A.K., Dhand C., Dwivedi N. Shape memory polymer coatings for smart and sustainable systems. Materials Today Chemistry, 2025. Vol. 45. Article 102607. DOI: https://doi.org/10.1016/j.mtchem.2025.102607.

Fan W., Zhang Y., Li W., Wang W., Zhao X., Song L. Multi-level self-healing ability of shape memory polyurethane coating with microcapsules by induction heating. Chemical Engineering Journal, 2019. Vol. 368. Pp. 1033–1044. DOI: https://doi.org/10.1016/j.cej.2019.03.027.

Zhang X.Q., Ding R., Xu J., Ji A.-L., Zhang Y.-C., Fu J. , Lv X., Yao L., Yang S.-Y., Mao Q.-G., Liang X., Liu J., Wang X. Infrared-responsive shape memory self-healing and fluorescent damage-indication anti-corrosion coatings for aluminum alloys. Journal of Coatings Technology and Research, 2024. Vol. 21. Pp. 1431–1446. DOI: https://doi.org/10.1007/s11998-023-00905-0.

Cheng H., Luo H., Hu Y., Tao S. Release kinetics as a key linkage between the occurrence of flame retardants in microplastics and their risk to the environment and ecosystem: A critical review. Water Research, 2020. Vol. 185. Article 116253. DOI: https://doi.org/10.1016/j.watres.2020.116253.

Shi S., Feng Q., Zhang J., Wang X., Zhao L., Fan Y., Hu P., Wei P., Bu Q., Cao Z. Global patterns of human exposure to flame retardants indoors. Science of the Total Environment, 2024. Vol. 912. Article 169393. DOI: https://doi.org/10.1016/j.scitotenv.2023.169393.

Ohoro C.R., Adeniji A.O., Okoh A.I., Okoh O.O. Polybrominated diphenyl ethers in the environmental systems: A review. Journal of Environmental Health Science and Engineering, 2021. Vol. 19. Pp. 1229–1247. DOI: https://doi.org/10.1007/s40201-021-00656-3.

Feiteiro J., Mariana M., Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. Environmental Pollution, 2021. Vol. 285. Article 117475. DOI: https://doi.org/10.1016/j.envpol.2021.117475.

Okeke E.S., Huang B., Mao G., Chen Y., Zhengjia Z., Qian X., Wu X., Feng, W. Review of the environmental occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives. Environmental Research, 2022. Vol. 206. Article 112594. DOI: https://doi.org/10.1016/j.envres.2021.112594.

Hansen-Bruhn I., Craig J.L., Hinge M., Hull T.R. Ammonium polyphosphates: Correlating structure to application. European Polymer Journal, 2025. Vol. 223. Article 113644. DOI: https://doi.org/10.1016/j.eurpolymj.2024.113644.

Shi X.-H., Luo H., Jing C.-Y., Shi H., Wang D.-Y. The preparation of ammonium polyphosphate@ nickel/cobalt-layered double hydroxide and its application as flame retardant in thermoplastic polyurethane. Polymer Degradation and Stability, 2024. Vol. 230. Article 111013. DOI: https://doi.org/10.1016/j.polymdegradstab.2024.111013.

Wang L., Lin X., Liu F., Lin P., Xiao H., Feng X., Wan C., Yang H. Flame-retardant aerogels and porous composites based on sustainable biomass polysaccharides: A review. Journal of Building Engineering, 2025. Vol. 112. Article 113806. DOI: https://doi.org/10.1016/j.jobe.2025.113806.

Jiang Y., Yang H., Lin X., Xiang S., Feng X., Wan C. Surface flame-retardant systems of rigid polyurethane foams: An overview. Materials, 2023. Vol. 16, No. 7. Article 2728. DOI: https://doi.org/10.3390/ma16072728.

Huo S., Wang C., Hu Q., Liu S., Zhang Q., Liu Z. A facile strategy to fabricate an intumescent fire-retardant coating with improved fire resistance and water tolerance for steel structure. Journal of Coatings Technology and Research, 2020. Vol. 17. Pp. 1401–1411. DOI: https://doi.org/10.1007/s11998-020-00360-1.

Li X., Xu Y., An X.-Y., Gong L., Wang R., Liu Z.-M. Eco-friendly and efficient flame retardant rigid polyurethane foam reinforced with lignin and silica aerogel. International Journal of Biological Macromolecules, 2025. Vol. 304, part 2. Article 140947. DOI: https://doi.org/10.1016/j.ijbiomac.2025.140947.

Altarawneh M., Saeed A., Al-Harahsheh M., Dlugogorski B.Z. Thermal decomposition of brominated flame retardants (BFRs): Products and mechanisms. Progress in Energy and Combustion Science, 2019. Vol. 70. Pp. 212–259. DOI: https://doi.org/10.1016/j.pecs.2018.10.004.

Kajiwara N., Matsukami H., Malarvannan G., Chakraborty P., Covaci A., Takigami H. Recycling plastics containing decabromodiphenyl ether into new consumer products including children's toys purchased in Japan and seventeen other countries. Chemosphere, 2022. Vol. 289. Article 133179. DOI: https://doi.org/10.1016/j.chemosphere.2021.133179.

Zu H., Geng Z., Yang R. Design of covalent adaptable networks with intrinsic flame retardancy. Polymer Bulletin, 2024. Vol. 81. Pp. 10489–10532. DOI: https://doi.org/10.1007/s00289-024-05211-2.

Kemmlein S., Herzke D., Law R.J. Brominated flame retardants in the European chemicals policy of REACH – Regulation and determination in materials. Journal of Chromatography A, 2009. Vol. 1216, No. 3. Pp. 320–333. DOI: https://doi.org/10.1016/j.chroma.2008.05.085.

Sharkey M., Harrad S., Abou-Elwafa Abdallah M., Drage D.S., Berresheim H. Phasing-out of legacy brominated flame retardants: the UNEP Stockholm Convention and other legislative action worldwide. Environment International, 2020. Vol. 144. Article 106041. DOI: https://doi.org/10.1016/j.envint.2020.106041.

de Boer J., Harrad S., Sharkey M. The European regulatory strategy for flame retardants – The right direction but still a risk of getting lost. Chemosphere, 2024. Vol. 347. Article 140638. DOI: https://doi.org/10.1016/j.chemosphere.2023.140638.

Akinrinade O.E., Agunbiade F.O., Alani R., Ayejuyo O.O. Implementation of the Stockholm Convention on persistent organic pollutants (POPs) in Africa – Progress, challenges, and recommendations after 20 years. Environmental Science: Advances, 2024. Vol. 3, No. 5. Pp. 623–634. DOI: https://doi.org/10.1039/D3VA00347G.

Wei G., Yu X., Fang L., Wang Q., Tanaka T., Amano K., Yang X. A review and comparison of the indoor air quality requirements in selected building standards and certifications. Building and Environment, 2022. Vol. 226. Article 109709. DOI: https://doi.org/10.1016/j.buildenv.2022.109709.

Spengler L., Jepsen D., Zimmermann T., Wichmann P. Product sustainability criteria in ecolabels: A complete analysis of the Blue Angel with focus on longevity and social criteria. The International Journal of Life Cycle Assessment, 2020. Vol. 25. Pp. 936–946. DOI: https://doi.org/10.1007/s11367-019-01642-6.

Braungart M., McDonough W., Bollinger A. Cradle-to-cradle design: creating healthy emissions – a strategy for eco-effective product and system design. Journal of Cleaner Production, 2007. Vol. 15, No. 13-14. Pp. 1337–1348. DOI: https://doi.org/10.1016/j.jclepro.2006.08.003.

Загрузки


Просмотров аннотации: 77
Загрузок PDF: 39

Опубликован

2025-11-25

Как цитировать

Ле A. T., Фан A., Нгуен T. N., До N. B. и Нгуен H. H. (2025) «Химические стратегии огнезащиты пористых огнеопасных материалов: достижения, применение и экологические соображения», Вестник Университета гражданской защиты МЧС Беларуси, 9(4), сс. 455–473. doi: 10.33408/2519-237X.2025.9-4.455.

Выпуск

Раздел

Пожаробезопасность и взрывозащита. Огнестойкость строительных материалов

Категории