Influence of the formulation of metal phosphate fire-retardant systems and modifying additives on the resistance of fire-retardant finishing of polyester fabrics to hydrolysis treatment
DOI:
https://doi.org/10.33408/2519-237X.2024.8-4.423Keywords:
metal phosphate fire retardant systems, modifying additives, polyester woven material, fire retardant finishing, hydrolysis treatmentAbstract
Purpose. Development of a formulation of metal phosphate flame retardant systems in the form of stable colloid-containing solutions, as well as a study of the effect of modifying additives on the resistance of fire-retardant finishing of polyester fabrics to hydrolysis treatment (washing).
Methods. Sol-gel method for synthesis of metal phosphate flame retardant systems, laboratory and standard methods of fire-retardant finishing, hydrolysis treatment and fire testing of polyester woven samples, transmission electron microscopy, complex thermal analysis (differential scanning calorimetry – DSC, thermogravimetry – TG).
Findings. The sol-gel method was used to obtain fire retardant systems (FRS) based on metal phosphate acidic concentrated solutions (binders). The synthesis conditions have been determined: the nature and ratios of the main components of Me-phosphate binders (Me – Ca, Sn, Al, Zn or Ba), the concentration of neutralizing agents (NaHCO3 or NH3·H2O) and modifiers (polyacrylamide, colloidal solution of SnCl2, hexamethylenetetramine, NH4Cl, urea), and the acidity of the medium, which make it possible to obtain FRS in the form of aggregation-stable solutions. It has been shown that the achievement of a fire-protective effect resistant to hydrolysis treatment is due to the strong fixation of fire retardants based on the Ca-phosphate binder in the presence of selected modifying additives – dispersing and/or mediating (PAA and/or aqueous colloidal solution of SnCl2) on the fabric. The presence of nanodispersed (10–20 nm) calcium and tin compounds in their solutions promote to better fixation of effective modified FRS. The resistance of the fire-retardant finish to hydrolysis treatment is confirmed by DSC and TG data: for fabric fire-protected with a modified composition (both after hydrolysis treatment and without it), the total heat emission is reduced (up to 1.5 times) with a simultaneous reduction in the total loss of mass of the samples compared to the original polyester material.
Application field of research. The experimental data can be used to impart a hydrolysis-resistant fire-retardant finish to low-density polyester woven materials. The results obtained make it possible to determine the ways of regulating the efficiency of known and new phosphate fire-retardant systems being developed for washing-resistant fire-retardant finishing of polyester fabrics.
References
Tausarova, B.R., Kutzhanova A.Zh., Kanlybaeva G.S. Snizhenie goryuchesti tekstil'nykh materialov: dostizheniya i perspektivy [Reducing the flammability of textile materials: achievements and prospects]. Chemical Journal of Kazakhstan, 2015. No. 1. Pp. 287–303. (rus)
Perepelkin K.E. Sovremennye khimicheskie volokna i perspektivy ikh primeneniya v tekstil'noy promyshlennosti [Modern chemical fibers and prospects for their application in the textile industry]. Rossiyskiy khimicheskiy zhurnal, 2002. Vol. 46, No. 1. Pp. 31–48. (rus). URL: https://www.chem.msu.su/rus/jvho/2002-1/31.pdf (date of access: September 26, 2024).
Salmeia K.A., Gaan S., Malucelli G. Recent advances for flame retardancy of textiles based on phosphorus chemistry. Polymers, 2016. Vol. 8, № 9. Article 319. 36 p. DOI: https://doi.org/10.3390/polym8090319.
Alongi J., Tata J., Carosio F., Rosace G., Frache A., Camino G. A comparative analysis of nanoparticle adsorption as fire-protection approach for fabrics. Polymers, 2015. Vol. 7, № 1. P. 47–68. DOI: https://doi.org/10.3390/polym7010047.
Kiselev A.M. Ekologicheskie aspekty protsessov otdelki tekstil'nykh materialov [Ecological aspects of textile finishing processes]. Rossiyskiy khimicheskiy zhurnal, 2002. Vol. 46, No. 1. Pp. 20–30. (rus). URL: https://www.chem.msu.su/rus/jvho/2002-1/20.pdf (date of access: September 26, 2024).
Konstantinova, N.I., Eremina T.Yu., Nikolaeva E.A., Al'menbaev M.M. Osobennosti vybora ognezashchitnykh sostavov dlya tekstil'nykh materialov [Special aspects of fire retardant composition selection for textile materials]. Fire and Explosion Safety, 2018. Vol. 27. No. 9. Pp. 17–25. (rus). DOI: https://doi.org/10.18322/PVB.2018.27.09.17-25. EDN: https://elibrary.ru/PBOPMR.
Safonov V.V., Tret'yakova A.E., Pyrkova V.M., Men'shova I.I., Pankratova E.V. Khimicheskaya tekhnologiya v iskusstve tekstilya [Chemical technology in the art of textiles]. Moscow: INFRA-M, 2020. 351 p. (rus). URL: https://znanium.ru/ catalog/document?id=354195 (date of access: September 26, 2024).
Zubkova N. S. Antonov Yu.S. Snizhenie goryuchesti tekstil'nykh materialov – reshenie ekolo-gicheskikh i sotsial'no-ekonomicheskikh problem [Reducing the flammability of textile materials – solving environmental and socio-economic problems]. Rossiyskiy khimicheskiy zhurnal, 2002. Vol. 46, No. 1. Pp. 96–102. (rus). URL: https://www.chem.msu.su/ rus/jvho/2002-1/96.pdf (date of access: September 26, 2024).
Özer M.S., Gaan S. Recent developments in phosphorus based flame retardant coatings for textiles: Synthesis, applications and performance. Progress in Organic Coatings, 2022. Vol. 171. Article 107027. DOI: https://doi.org/10.1016/j.porgcoat.2022.107027.
Bogdanova V.V., Kobets O.I. Synthesis and physicochemical properties of Di- and trivalent metal–ammonium phosphates. Russian Journal of Applied Chemistry, 2014. Vol. 87, No. 10. Pp. 1387–1401. (rus). DOI: https://doi.org/10.1134/S1070427214100012. EDN: https://elibrary.ru/UVBEXF.
Bogdanova V.V., Kobets O.I., Tikhonov M.M. Faktory, okazyvayushchie dominiruyushchee vliyanie na prekrashchenie goreniya prirodnykh i sinteticheskikh materialov [Factors that have a dominant influence on the cessation of combustion of natural and synthetic materials]. Proc. of IX Intern. conf. in memory of Academician B.A. Zhubanov «Polimernye materialy ponizhennoy goryuchesti [Polymeric materials of reduced flammability]», Almaty, June 5–10, 2017. Almaty: Al-Farabi Kazakh National University, 2017. Pp. 88–91. (rus)
Reva, O.V., Bogdanova V.V., Luk'yanov A.S., Perevoznikov S.S., Andreeva T.N. Zavisimost' effektivnosti ognezashchity netkanogo poliefirnogo materiala ot khimicheskoy prirody azot-fosfor¬soderzhashchego antipirena [Dependence of fire proof efficiency of nonwoven polyester material from the chemical nature of nitrogen and phosphorus-containing flame retardant]. Journal of the Belarusian State University. Chemistry, 2017. No. 2. Pp. 85–93. (rus). URL: https://journals.bsu.by/index.php/chemistry/article/view/1171. EDN: https://elibrary.ru/YQUZDX.
Reva O.V., Bogdanova V.V., Shukelo Z.V., Nazarovich A.N., Kobets O.I. Sintez i issledovanie ognezashchitnykh svoystv novykh metallofosfatnykh zamedliteley goreniya dlya tekstil'nykh materialov, ispol'zuemykh v zashchitnoy odezhde [Synthesis and study of flame retardant properties of new metal phosphate flame retardants for textile materials used in protective clothing]. Journal of Civil Protection, 2021. Vol. 5, No. 4. Pp. 402–417. (rus). DOI: https://doi.org/10.33408/2519-237X.2021.5-4.402. EDN: https://elibrary.ru/PMCJNB.
Bogdanova, V.V., Kobets O.I. Ognezaderzhivayushchie svoystva metallofosfatnykh suspenziy na osnove prirodnogo syr'ya [Fire-retardant properties of metal phosphate suspensions based on natural raw materials]. Khimicheskie reaktivy, reagenty i protsessy malotonnazhnoy khimii [Chemical reagents, reagents and processes of low-tonnage chemistry]: proceedings of the Insitut of Chemistry of New Matter of the National Academy of Sciences of Belarus. Minsk: Belaruskaya navuka, 2011. Pp. 272–284. (rus)
Bogdanova V.V., Kobets O.I. Regulirovanie fiziko-khimicheskikh svoystv kompozitsiy na osnove fosfatov metallov-ammoniya, proyavlyayushchikh ognezashchitnyy i ognetushashchiy effect [Regulation of the physicochemical properties of compositions based on metal-ammonium phosphates exhibiting a fire retardant and fire extinguishing effect]. Sviridov readings: collected papers. Minsk: Belarusian State University, 2011. Iss. 7. Pp. 21–27. (rus). Url: http://elib.bsu.by/handle/123456789/24996 (date of access: September 26, 2024).
Malucelli G. Sol-gel technique for protective textile and clothing. Chapter 1 in book: Advances in Functional and Protective Textiles. Ed. by S. Islam, B.S. Butola. Kidlington: Woodhead Publishing (Elsevier), 2020. P. 1–17. DOI: https://doi.org/10.1016/B978-0-12-820257-9.00001-1.
Powder diffraction file. Data Cards. ICPDS. Int. Centre for diffraction data. Swarthmore, Pensylvania, USA, 1989.
Reva, O.V., Bogdanova V.V., Shukelo Z.V. Khimicheskaya privivka ognezashchitnykh kompozitsiy k poliefirnym matritsam [Chemical grafting of flame retardant compositions to polyester matrices]. Sviridov readings: collected papers. Minsk: Belarusian State University, 2013. Vol. 9. Pp. 158–168. (rus). URL: http://elib.bsu.by/handle/123456789/228375 (date of access: September 26, 2024).
Elkina A.K. Krashenie dublirovochnykh materialov estestvennymi organicheskimi i kubovymi krasitelyami [Dyeing of duplicating materials with natural organic and cube dyes]. Khudozhestvennoe nasledie: khranenie, issledovanie, restavratsiya, 1980. No. 6 (36). Pp. 96–111. (rus). URL: https://www.gosniir.ru/library/artistic-heritage/artistic-heritage-06.aspx (date of access: September 26, 2024).
Vorob'eva E.V., Krut'ko N.P. Polimernye kompleksy v vodnykh i solevykh sredakh [Polymer complexes in aqueous and salt media]. Minsk: Belaruskaya navuka, 2010. 175 p. (rus). ISNB 978-985-08-1179-0.
Gromakov N.S. Dispersnye sistemy i ikh svoystva [Dispersed systems and their properties]: colloidal chemistry textbook. Kazan: Kazan State University of Architecture and Engineering, 2015. 91 p. (rus). ISBN 978-5-7829-0515-6.
Bogdanova V.V., Kobets O.I. Atmosferostoykiy ognezashchitno-ognetushashchiy sostav dlya predotvrashcheniya i tusheniya pozharov v prirodnom komplekse [Weatherproof fire retardant-extinguishing chemical agent for the prevention and suppression of fires in the natural complex]. Sviridov readings: collected papers. Minsk: Belarusian State University, 2017. Vol. 13. Pp. 31–40. (rus). URL: http://elib.bsu.by/handle/123456789/194667 (date of access: September 26, 2024).
Zhumaniyazov M.Zh., Beglov B.M., Khodzhaev O.F., Yuldashev N.Kh. Solubility polytherm of the ternary system hexamethylenetetramine-ammonium dihydrogen phosphate-water. Russian Journal of General Chemistry, 2004. Vol. 74, Iss. 7. Pp. 1001–1004. DOI: https://doi.org/10.1023/B:RUGC.0000045855.52134.25. EDN: https://elibrary.ru/XMTCML.
Dreyfors J.M., Jones S.B., Sayed Y. Hexamethylenetetramine: a review. American Industrial Hygiene Association Journal, 1989. Vol. 50, Iss. 11. Pp. 579–585. DOI:10.1080/15298668991375191.
Akhmetov T.G. Khimiya i tekhnologiya soedineniy bariya [Chemistry and technology of barium compounds]. Moscow: Khimiya, 1974. 152 p. (rus)
Frumina N.S., Goryunova N.N., Eremenko S.N. Analiticheskaya khimiya bariya [Analytical chemistry of barium]: monograph. Moscow: Nauka, 1977. 200 p. (rus)
Sudakas L.G. Fosfatnye vyazhushchie sistemy [Phosphate binder systems]: monograph. Saint Petersburg: Kvintet, 2008. 254 p. (rus). ISBN 978-5-902983-04-0.
Published
How to Cite
License
Copyright (c) 2024 Bogdanova V.V., Kobets O.I., Reva O.V.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.