Mathematical model of a spatially variable unstable flow motion at the breakthrough of hydrotechnical structures under the conditions of highland
DOI:
https://doi.org/10.33408/2519-237X.2020.4-1.48Keywords:
spatial change, unsteady motion, displacement waves, pressure hydraulic structureAbstract
Purpose. Modeling of spatially changing unsteady flow motion resulting from hydrodynamic accidents in mountainous areas.
Methods. Mathematical modeling of unsteady fluid flow.
Findings. When an unsteady stream expands along the slope of the terrain, the wave decays into a refracted wave, whose motion can be described by the equation of energy balance with the inertial component; and the reflected one, which is converted into spatial hopping conjugation, which is described by energy balance.
Application field of research. The proposed equations can be used as a mathematical model of unsteady smoothly changing water movement in case of destruction or breakthrough of a pressure hydraulic structure under the conditions of highland.
References
Bogomolov A.I., Mikhaylov K.A. Gidravlika [Hydraulics]. The second ed. Moscow: Stroyizdat, 1972. 648 p. (rus)
Konstantinov N.M., Petrov N.A., Vysotskiy L.I. Gidravlika, gidrologiya, gidrometriya [Hydraulics, hydrology, hydrometry]: textbook for universities in 2 parts. Moscow: Vysshaya shkola, 1987. Part 2: Spetsial'nye voprosy [Special issues]. 431 p. (rus)
Girgidov A.D. Mekhanika zhidkosti i gaza (gidravlika) [Mechanics of fluid and gas (hydraulics)]: textbook for universities. The third ed. Saint Petersburg: izdatel'stvo Politekhnicheskogo universiteta, 2007. 545 p. (rus)
Spravochnik po gidravlike [Handbook of hydraulics]. Ed. by V.A. Bol'shakov. The second ed. Kiev: Vyshcha shkola, 1984. 343 p. (rus)
Striganova M.Yu. Matematicheskaya model' neustanovivshegosya dvizheniya volny proryva i eksperimental'nye issledovaniya potoka v prizmaticheskom nizhnem b'efe [Mathematical model of unsteady motion of a breakthrough wave and experimental studies of flow in a prismatic downstream]. Chrezvychaynye situatsii: preduprezhdenie i likvidatsiya, 2010. Vol. 28, № 2. Pp. 83–93. (rus)
Karpenchuk I.V., Striganova M.Yu. Matematicheskaya model' neustanovivshegosya dvizheniya volny proryva gidrotekhnicheskikh sooruzheniy napornogo fronta [A mathematical model of unsteady motion of a wave of breakthrough of hydraulic structures of a pressure head]. Proc. IV Intern. scientific-practical conf. «Prirodnichi nauki ta ikh zastosuvannya v diyal'nosti sluzhby tsivil'nogo zakhistu». Cherkasy Institute of Fire Safety named after Chornobyl Heroes of National University of Civil Defense of Ukraine. Cherkasy, 2010. Pp. 57–60. (rus)
Published
How to Cite
License
Copyright (c) 2020 Striganova M.Yu., Shatalov I.M., Samedov S.A., Nedashkovskaya I.V., Rabchenya V.S.CC «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0