The effect of the height of the installation of a manual fire barrel with optimal geometric parameters on the consumption of extinguishing agent

Authors

  • Artem A. Morozov State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0001-8079-2578

DOI:

https://doi.org/10.33408/2519-237X.2022.6-4.429

Keywords:

manual fire barrel, flow part, consumption of extinguishing agent, hydraulic calculation of pumping-hose systems

Abstract

Purpose. Conducting experimental studies to determine the consumption of extinguishing agent at different pump force when changing the height of the location of the manual fire barrel with optimal geometric parameters.

Methods. Numerical modeling by the finite element method, experimental studies according to the developed methodology using certified and calibrated equipment.

Findings. It is found that the dimension y of the first cell of the finite element grid significantly affects the calculation time – when the cell size is reduced by 2 times, the time increases by more than 5 times, while the calculation results change by less than 1 %. The influence of the height of the location of the fire barrel on the consumption of extinguishing agent at different fire pump forces is investigated. It was found that the calculated values differ from the experimental ones by no more than 8 %, which in practice does not affect the fire extinguishing process.

Application field of research. The results obtained are the basis for calculating the geometric parameters of the flow part of fire barrels and a comprehensive study of their tactical and technical characteristics.

Author Biography

Artem A. Morozov, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Emergency Elimination, Senior Lecturer

References

Takahashi S. Extinguishment of plastics fires with plain water and wet water. Fire Safety Journal, 1994. Vol. 22, Iss. 2. Pp. 169–179. DOI: https://doi.org/10.1016/0379-7112(94)90071-X.

Grant G., Brenton J., Drysdale D. Fire suppression by water sprays. Progress in Energy and Combustion Science, 2000. Vol. 26, Iss. 2. Pp. 79–130. DOI: https://doi.org/10.1016/S0360-1285(99)00012-X. EDN: https://elibrary.ru/AELJYB.

Torvi D., Hadjisophocleous G., Guenther M.B., Thomas G. Estimating Water Requirements for Firefighting Operations Using FIERAsystem. Fire Technology, 2001. Vol. 37. Pp. 235–262. DOI: https://doi.org/10.1023/A:1012487619577. EDN: https://elibrary.ru/APZGQT.

Jinsong H., Kurichi K., Boo C.K., Hong X. A numerical study of the interaction of water spray with a fire plume. Fire Safety Journal, 2002. Vol. 37, Iss. 7. Pp. 631–657. DOI: https://doi.org/10.1016/S0379-7112(02)00026-7.

Hadjisophocleous G.V., Richardson J.K. Water Flow Demands for Firefighting. Fire Technology, 2005. Vol. 41. Pp. 173–191. DOI: https://doi.org/10.1007/s10694-005-1269-6.

Xiaomeng Z., Guangxuan L., Bo C. Improvement of water mist's fire-extinguishing efficiency with MC additive. Fire Safety Journal, 2006. Vol. 41, No. 1. Pp. 39–45. DOI: https://doi.org/10.1016/j.firesaf.2005.08.004.

Liu Z., Kim A.K., Carpenter D. A study of portable water mist fire extinguishers used for extinguishment of multiple fire types. Fire Safety Journal, 2007. Vol. 42, Iss. 1. Pp. 25–42. DOI: https://doi.org/10.1016/j.firesaf.2006.06.008.

LeFort G., Marshall A.W., Pabon M. Evaluation of Surfactant Enhanced Water Mist Performance. Fire Technology, 2009. Vol. 45. Pp. 341–354. DOI: https://doi.org/10.1007/s10694-008-0068-2.

Vagapov R.R., Rodionov V.A. Novye vozmozhnosti povysheniya ognetushashchikh svoystv vody I vodnykh rastvorov PAV [New possibilities of fire-extinguishing performance improvement of water and water-based surfactant solutions]. Oil Industry, 2010. No. 11. Pp. 123–125. (rus). EDN: https://elibrary.ru/NCUOJL.

Bogdanov P.N., Dementyev F.A. Perspektivy sozdaniya kombinirovannykh ognetushashchikh sostavov na osnove vody i ozononerazrushayushchikh khladonov [Prospects of creation of combined extinguishing agent based on water and ozone nondestructive chladones]. Vestnik Saint-Petersburg university of State fire service of EMERCOM of Russia, 2012. No. 4. Pp. 147–150. (rus). EDN: https://elibrary.ru/RRVTGJ.

Yao B., Cong B.H., Qin J., Chow W.K. Experimental study of suppressing Poly (methyl methacrylate) fires using water mists. Fire Safety Journal, 2012. Vol. 47. Pp. 32–39. DOI: https://doi.org/10.1016/j.firesaf.2011.08.004.

Gadzhiev Sh.G., Ivanov A.V., Ivakhnyuk G.K., Kadochnikova E.N. Issledovanie ognetushashchikh i teplozashchitnykh svoystv vodnogelevykh sostavov na osnove modifitsirovannykh nanozhidkostey [Research extinguishing and thermal insulation properties of hydrogels prepared from modified nanofluids]. Vestnik Saint-Petersburg university of State fire service of EMERCOM of Russia, 2014. No. 2. Pp. 31–37. (rus). EDN: https://elibrary.ru/STAHXR.

Tarantsev A.A., Chashchin A.S. Primenenie modifitsirovannykh vodnykh rastvorov dlya tseley pozharotusheniya na ob"ektakh zheleznodorozhnogo transporta [Application of modified water solutions for fire on the objects of railways] Vestnik Saint-Petersburg university of State fire service of EMERCOM of Russia, 2015. No. 2. Pp. 30–37. (rus). EDN: https://elibrary.ru/UGYDYR.

Conroy M.W., Ananth R. Fuel Surface Cooling by Aqueous Foam: A Pool Fire Suppression Mechanism. Fire Technology, 2015. Vol. 51. Pp. 667–689. DOI: https://doi.org/10.1007/s10694-015-0470-5.

Yoshida A., Kashiwa K., Hashizume S., Naito H. Inhibition of counterflow methane/air diffusion flame by water mist with varying mist diameter. Fire Safety Journal, 2015. Vol. 71. Pp. 217–225. DOI: https://doi.org/10.1016/j.firesaf.2014.11.030. EDN: https://elibrary.ru/USVLEP.

Volkov R.S., Voytkov I.S., Vysokomornaya O.V. Osobennosti tusheniya zhidkikh topliv i organicheskikh goryuchikh zhidkostey raspylennym potokom vody [Features of extinguishing liquid fuels and organic flammable liquids by an atomized water flow]. Fire and explosion safety, 2016. Vol. 25. No. 4. Pp. 68–75. (rus). DOI: https://doi.org/10.18322/PVB.2016.25.04.68-75. EDN: https://elibrary.ru/VWRBLR.

Mykhalichko B., Lavrenyuk H., Mykhalichko O. New water-based fire extinguishant: Elaboration, bench-scale tests, and flame extinguishment efficiency determination by cupric chloride aqueous solutions. Fire Safety Journal, 2019. Vol. 105. Pp. 188–195. DOI: https://doi.org/10.1016/j.firesaf.2019.03.005. EDN: https://elibrary.ru/KMPGUZ.

Chugunova T.M. Primenenie sovremennykh ruchnykh pozharnykh stvolov. Plyusy i minusy [The use of modern manual fire barrels. Advantages and disadvantages]. Akademicheskaya publitsistika, 2019. No. 6. Pp. 65–70. (rus). EDN: https://elibrary.ru/JGCQQP.

Shafranskiy D.A. O rezul'tatakh ispytaniya eksperimental'nogo obraztsa stvola ruchnogo pozharnogo universal'nogo SPRU-50/0,7 [About the test results of an experimental sample of a universal manual fire barrel SPRU-50/0.7]. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus', 2013. No. 1 (17). Pp. 68–74. (rus). EDN: https://elibrary.ru/SNEITH.

Karpenchuk I.V., Shafranskiy D.A., Yankevich N.G. Razrabotka i optimizatsiya gidrodinamicheskikh parametrov otechestvennoy modifikatsii eksperimental'nogo obraztsa stvola ruchnogo pozharnogo universal'nogo [Development and optimization of hydrodynamic parameters of the domestic modification of the experimental sample of universal manual fire barrel] Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus', 2013. No. 2 (18). Pp. 270–279. (rus). EDN: https://elibrary.ru/SNFAMV.

Kamlyuk A.N., Parmon V.V., Striganova M.Yu., Shirko A.V., Morozov A.A. Raschet i optimizatsiya geometrii protochnogo kanala pozharnogo stvola s raskhodom do 5 l/s [Calculation and optimization of the geometry of the flow channel at a rate of fire of the barrel to 5 l/s]. Vestnik Komandno-inzhenernogo instituta MChS Respubliki Belarus', 2016. No. 1 (23). Pp. 51–59. (rus). EDN: https://elibrary.ru/VKXNTD.

Marozau A., Tran Duc H., Kamluk A., Parmon V., Striganova M. Pump-hose systems with universal fire barrels for extinguishing buildings. Magazine of Civil Engineering, 2021. Vol. 103. No 3. Article 10305. 9 p. DOI: https://doi.org/10.34910/MCE.103.5. EDN: https://elibrary.ru/ALXOEJ.

Logunova O.S., Romanov P.Yu., Il'ina E.A. Obrabotka eksperimental'nykh dannykh na EVM [Processing of experimental data on a computer]: textbook. Moscow: Infra-M, 2021. 377 p. (rus). DOI: https://doi.org/10.12737/1064882. EDN: https://elibrary.ru/CPOFPS.

Terebnev V.V., Podgrushnyy A.V. Pozharnaya taktika: Osnovy tusheniya pozharov: [Fire tactics: The basics of fire extinguishing]: tutorial. Moscow: Academy of State Fire Service of EMERCOM of Russia, 2012. 322 p. (rus)

Downloads


Abstract views: 41
PDF Downloads: 16

Published

2022-11-16

How to Cite

Morozov А. А. (2022) “The effect of the height of the installation of a manual fire barrel with optimal geometric parameters on the consumption of extinguishing agent”, Journal of Civil Protection, 6(4), pp. 429–440. doi: 10.33408/2519-237X.2022.6-4.429.

Issue

Section

Fire and industrial safety (technical sciences)

Most read articles by the same author(s)