Measurement of absorbed dose of ionizing radiation by means of optical waveguide structures

Authors

  • Igor A. Goncharenko State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0002-8063-8068
  • Aleksandr V. Il'yushonok State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0001-7523-4483
  • Vitaliy N. Reabtsev State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25 https://orcid.org/0000-0002-2830-591X

DOI:

https://doi.org/10.33408/2519-237X.2022.6-2.159

Keywords:

optical waveguide, ionizing radiation, radiation dose, scintillator, Bragg grating, ring microresonator

Abstract

Purpose. Analysis of the measuring methods and structures of the sensors of absorbed dose of ionizing radiation on the base of optical waveguides.

Methods. The general methodology of the work included the use of theoretical research methods (analysis, synthesis, comparison).

Findings. The measurement methods and structures of the sensors of absorbed dose of ionizing radiation on the base of optical waveguides are analyzed. The physical effects underlying the methods are considered. It’s shown that the sensors comprising microring resonators on the base of silicon waveguides coated with fluoropolymer are the most prospective due to the higher sensitivity.

Application field of research. The results of review and analysis of the information about the methods of measurement of absorbed dose of ionizing radiation can serve as a basis for creating effective optical waveguide dosimeters with higher sensitivity.

Author Biographies

Igor A. Goncharenko, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Natural Sciences, Professor; Grand PhD in Physical and Mathematical Sciences, Professor

Aleksandr V. Il'yushonok, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Natural Sciences, Head of Chair; PhD in Physical and Mathematical Sciences, Associate Professor

Vitaliy N. Reabtsev, State Educational Establishment «University of Сivil Protection of the Ministry for Emergency Situations of the Republic of Belarus»; 220118, Belarus, Minsk, Mashinostroiteley str., 25

Chair of Automatic System Security, Head of Chair; PhD in Technical Sciences, Associate Professor

References

Friebele E.J., Griscom D.L., Sigel G.H. Defect centers in a germanium-doped silica core optical fiber. Journal of Applied Physics, 1974. Vol. 45, No. 8. Pp. 3424–3428. DOI: https://www.doi.org/10.1063/1.1663795.

Friebele E.J. Gingerich M.E., Long K.J. Radiation damage of optical fiber waveguides at long wavelengths. Applied Optics, 1982. Vol. 21, No. 3. Pp. 547–553. DOI: https://www.doi.org/10.1364/AO.21.000547.

The Dosimetry of Ionizing Radiation. Ed. by K.R. Kase, B.E. Bjärngard, F.H. Attix. Academic Press, 1987. Vol. 2. 384 p.

Andreo P., Burns D.T., Nahum A.E., Seuntjens J., Attix F.H. Fundamentals of Ionizing Radiation Dosimetry. Wiley, 2017. 957 p.

London Y. [et al.] Opto-Mechanical Fiber Sensing of Gamma Radiation. Journal of Lightwave Technology, 2021. Vol. 39, No. 20. Pp. 6637–6645.

Boynton N., Gehl M., Dallo C. [et al.] Gamma radiation effects on passive silicon photonic waveguides using phase sensitive methods. Optics Express, 2020. Vol. 28, No. 23. Pp. 35192–35201. DOI: https://www.doi.org/10.1364/OE.401299.

Gusarov A.I., Berghmans F., Fernandez A.F. [et al.] Behaviour of fibre Bragg gratings under high total dose gamma radiation. IEEE Transactions on Nuclear Science, 2000. Vol. 47, Iss. 3. Pp. 688–692. DOI: https://www.doi.org/10.1109/23.856499.

Girard S., Kuhnhenn J., Gusarov A. [et al.] Radiation effects on silica-based optical fibers: recent advances and future challenges. IEEE Transactions on Nuclear Science, 2013. Vol. 60, No. 3. Pp. 2015–2036. DOI: https://www.doi.org/10.1109/TNS.2012.2235464.

Paul M.C., Sen R., Bhadra S.K. [et al.] Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels. Optical Materials, 2007. Vol. 29, No. 6. Pp. 738–745. DOI: https://www.doi.org/10.1016/j.optmat.2005.12.004.

Paul M.C., Sen R., Bhadra S.K., Dasgupta K. Radiation response behaviour of Al codoped germano-silicate SM fiber at high radiation dose. Optics Communications, 2009. Vol. 282. Pp. 872–878. DOI: https://www.doi.org/10.1016/j.optcom.2008.11.052.

Paul M.C., Bohra D., Dhar A. [et al.] Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation. Journal of Non-Crystalline Solids, 2009. Vol. 355. Pp. 1496–1507. DOI: https://www.doi.org/10.1016/j.jnoncrysol.2009.05.017.

Tomashuk A.L. Volokonno-opticheskie dozimetry [Fiber Optic Dosimeters]. Foton-Ekspress, 2005. No. 7. Pp. 53–55. (rus)

Tomashuk A.L., Grekov M.V., Vasiliev S.A., Svetukhin V.V. Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: suppression of post-irradiation fading by using two working wavelengths in visible range. Optics Express, 2014. Vol. 22, No. 14. Pp. 16778–16783. DOI: https://www.doi.org/10.1364/OE.22.016778.

Alasia D., Fernández A., Abrardi L., Brichard B., Thévenaz L. The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres. Measurement Science and Technology, 2006. Vol. 17, No. 5. Pp. 1091–1094. DOI: https://www.doi.org/10.1088/0957-0233/17/5/S25.

Phéron X., Girard S., Boukenter A. [et al.] High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors. Optics Express, 2012. Vol. 20, No. 24. Pp. 26978–26985. DOI: https://www.doi.org/10.1364/OE.20.026978.

Stolov A.A., Warych E.T., Smith W.P. [et al.] Effects of sterilization on optical and mechanical reliability of specialty optical fibers and terminations. Proc. of the SPIE of Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XIV, United States, California, San Francisco, 2014. Vol. 8938. Pp. 893806. DOI: https://www.doi.org/10.1117/12.2036864.

Butov O.V., Golant K.M., Shevtsov I.A., Fedorov A.N. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen. Journal of Applied Physics, 2015. Vol. 118. Pp. 074502. DOI: https://www.doi.org/10.1063/1.4928966.

Fernandez A.F., Brichard B., Berghmans F., Decreton M. Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters. IEEE Transactions on Nuclear Science, 2002. Vol. 49, No. 6. Pp. 2874–2878. DOI: https://www.doi.org/10.1109/TNS.2002.805985.

Maier R.R.J., MacPherson W.N., Barton J.S. [et al.] Fibre Bragg gratings of type I in SMF-28 and B/Ge fibre and type IIA B/Ge fibre under gamma radiation up to 0,54 MGy. Proc. of SPIE 17th International Conference on Optical Fibre Sensors, 2005. Vol. 5855. Pp. 511–514. DOI: https://www.doi.org/10.1117/12.624037.

Faustov A., Saffari P., Koutsides C. [et al.] Highly radiation sensitive type IA FBGs for future dosimetry applications. IEEE Transactions on Nuclear Science, 2012. Vol. 59, No. 4. Pp. 1180–1185. DOI: https://www.doi.org/10.1109/TNS.2012.2202247.

Krebber K., Henschel H., Weinand U. Fibre Bragg gratings as high dose radiation sensors? Measurement Science and Technology, 2006. Vol. 17, No. 5. Pp. 1095–1102. DOI: https://www.doi.org/10.1088/0957-0233/17/5/S26.

Baccini D.J., Hinckley S., Wild G., Banos C., Davies J. Gamma irradiation in fibre Bragg gratings. Proc. of 20th Australian Institute of Physics Congress, Australia, Sydney, 2012. Engineers Australia, 2012. Pp. 1–4.

Rana S., Subbaraman H., Fleming A., Kandadai N. Numerical analysis of radiation effects on fiber optic sensors. Sensors, 2021. Vol. 21. Pp. 4111-1–4111-17. DOI: https://www.doi.org/10.3390/s21124111.

Bhandaru S., Hu S., Fleetwood D.M., Weiss S.M. Total ionizing dose effects on silicon ring resonators. IEEE Transactions on nuclear science, 2015. Vol. 62, No. 1. Pp. 323–328. DOI: https://www.doi.org/10.1109/TNS.2014.2387772.

Grillanda S., Singh V., Raghunathan V. [et al.] Gamma radiation effects on silicon photonic waveguides. Optics Letters, 2016. Vol. 41, No. 13. Pp. 3053–3056. DOI: https://www.doi.org/10.1364/OL.41.003053.

Du Q., Huang Y., Ogbuu O. [et al.] Gamma radiation effects in amorphous silicon and silicon nitride photonic devices. Optics Letters, 2017. Vol. 42, No. 3. Pp. 587–590. DOI: https://www.doi.org/10.1364/OL.42.000587.

Zhuang Q., Yaosheng H., Yu M. [et al.] Embedded structure fiber-optic radiation dosimeter for radiotherapy applications. Optics Express, 2016. Vol. 24, No. 5. Pp. 5172–5185. DOI: https://www.doi.org/10.1364/OE.24.005172.

Suarez M.A., Lim T., Robillot L. [et al.] Miniaturized fiber dosimeter of medical ionizing radiations on a narrow optical fiber. Optics Express, 2019. Vol. 27, No. 24. Pp. 35588–35599. DOI: https://www.doi.org/10.1364/OE.27.035588.

Jia M., Wen J., Pan X. [et al.] Tapered fiber radiation sensor based on Ce/Tb:YAG crystals for remote γ-ray dosimetry. Optics Express, 2021. Vol. 29, No. 2. Pp. 1210–1220. DOI: https://www.doi.org/10.1364/OE.413822.

Novikov S.G., Chertoriyskiy A.A., Berintsev A.V. Optovolokonnaya dozimetricheskaya sistema na baze stsintillyatsionnogo opticheskogo volokna [Fiber optic dosimetry system based on scintillation optical fiber]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2013. T. 15, No. 4. Pp. 1017–1023. (rus)

Goncharenko I., Marciniak M., Reabtsev V. Electric field sensing with liquid-crystal-filled slot waveguide microring resonators. Applied Optics, 2017. Vol. 56, No. 27. Pp. 7629–7635. DOI: https://www.doi.org/10.1364/AO.56.007629.

Downloads


Abstract views: 176
PDF Downloads: 89

Published

2022-05-25

How to Cite

Goncharenko И. А., Il’yushonok А. В. and Reabtsev В. Н. (2022) “Measurement of absorbed dose of ionizing radiation by means of optical waveguide structures”, Journal of Civil Protection, 6(2), pp. 159–175. doi: 10.33408/2519-237X.2022.6-2.159.