Измерение поглощенной дозы ионизирующего излучения с помощью оптических волноводных структур

Авторы

  • Игорь Андреевич Гончаренко Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25 https://orcid.org/0000-0002-8063-8068
  • Александр Васильевич Ильюшонок Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25 https://orcid.org/0000-0001-7523-4483
  • Виталий Николаевич Рябцев Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25 https://orcid.org/0000-0002-2830-591X

DOI:

https://doi.org/10.33408/2519-237X.2022.6-2.159

Ключевые слова:

оптический волновод, ионизирующее излучение, доза излучения, сцинтиллятор, брэгговская решетка, кольцевой микрорезонатор

Аннотация

Цель. Целью работы является анализ методов измерения и конструкций датчиков поглощенной дозы ионизирующего излучения на основе оптических волноводных структур.

Методы. Общая методология работы предусматривала использование теоретических методов исследования (анализ, синтез, сравнение).

Результаты. Проведен анализ методов измерения и конструкций датчиков поглощенной дозы ионизирующего излучения на основе оптических волноводных структур. Рассмотрены различные физические эффекты, лежащие в основе методов. Показано, что с точки зрения чувствительности перспективными являются детекторы на основе микрокольцевых резонаторов на базе кремниевых волноводов, покрытых фторполимером.

Область применения исследований. Результаты обзора и анализа сведений о методах измерения поглощенной дозы ионизирующего излучения могут послужить базой для создания эффективных конструкций дозиметров на основе оптических волноводных структур высокой чувствительности.

Биографии авторов

Игорь Андреевич Гончаренко, Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25

кафедра естественных наук, профессор; доктор физико-математических наук, профессор

Александр Васильевич Ильюшонок, Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25

кафедра естественных наук, заведующий кафедрой; кандидат физико-математических наук, доцент

Виталий Николаевич Рябцев, Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25

кафедра автоматических систем безопасности, начальник кафедры; кандидат технических наук, доцент

Библиографические ссылки

Friebele E.J., Griscom D.L., Sigel G.H. Defect centers in a germanium-doped silica core optical fiber. Journal of Applied Physics, 1974. Vol. 45, No. 8. Pp. 3424–3428. DOI: https://www.doi.org/10.1063/1.1663795.

Friebele E.J. Gingerich M.E., Long K.J. Radiation damage of optical fiber waveguides at long wavelengths. Applied Optics, 1982. Vol. 21, No. 3. Pp. 547–553. DOI: https://www.doi.org/10.1364/AO.21.000547.

The Dosimetry of Ionizing Radiation. Ed. by K.R. Kase, B.E. Bjärngard, F.H. Attix. Academic Press, 1987. Vol. 2. 384 p.

Andreo P., Burns D.T., Nahum A.E., Seuntjens J., Attix F.H. Fundamentals of Ionizing Radiation Dosimetry. Wiley, 2017. 957 p.

London Y. [et al.] Opto-Mechanical Fiber Sensing of Gamma Radiation. Journal of Lightwave Technology, 2021. Vol. 39, No. 20. Pp. 6637–6645.

Boynton N., Gehl M., Dallo C. [et al.] Gamma radiation effects on passive silicon photonic waveguides using phase sensitive methods. Optics Express, 2020. Vol. 28, No. 23. Pp. 35192–35201. DOI: https://www.doi.org/10.1364/OE.401299.

Gusarov A.I., Berghmans F., Fernandez A.F. [et al.] Behaviour of fibre Bragg gratings under high total dose gamma radiation. IEEE Transactions on Nuclear Science, 2000. Vol. 47, Iss. 3. Pp. 688–692. DOI: https://www.doi.org/10.1109/23.856499.

Girard S., Kuhnhenn J., Gusarov A. [et al.] Radiation effects on silica-based optical fibers: recent advances and future challenges. IEEE Transactions on Nuclear Science, 2013. Vol. 60, No. 3. Pp. 2015–2036. DOI: https://www.doi.org/10.1109/TNS.2012.2235464.

Paul M.C., Sen R., Bhadra S.K. [et al.] Gamma ray radiation induced absorption in Ti doped single mode optical fibres at low dose levels. Optical Materials, 2007. Vol. 29, No. 6. Pp. 738–745. DOI: https://www.doi.org/10.1016/j.optmat.2005.12.004.

Paul M.C., Sen R., Bhadra S.K., Dasgupta K. Radiation response behaviour of Al codoped germano-silicate SM fiber at high radiation dose. Optics Communications, 2009. Vol. 282. Pp. 872–878. DOI: https://www.doi.org/10.1016/j.optcom.2008.11.052.

Paul M.C., Bohra D., Dhar A. [et al.] Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation. Journal of Non-Crystalline Solids, 2009. Vol. 355. Pp. 1496–1507. DOI: https://www.doi.org/10.1016/j.jnoncrysol.2009.05.017.

Tomashuk A.L. Volokonno-opticheskie dozimetry [Fiber Optic Dosimeters]. Foton-Ekspress, 2005. No. 7. Pp. 53–55. (rus)

Tomashuk A.L., Grekov M.V., Vasiliev S.A., Svetukhin V.V. Fiber-optic dosimeter based on radiation-induced attenuation in P-doped fiber: suppression of post-irradiation fading by using two working wavelengths in visible range. Optics Express, 2014. Vol. 22, No. 14. Pp. 16778–16783. DOI: https://www.doi.org/10.1364/OE.22.016778.

Alasia D., Fernández A., Abrardi L., Brichard B., Thévenaz L. The effects of gamma-radiation on the properties of Brillouin scattering in standard Ge-doped optical fibres. Measurement Science and Technology, 2006. Vol. 17, No. 5. Pp. 1091–1094. DOI: https://www.doi.org/10.1088/0957-0233/17/5/S25.

Phéron X., Girard S., Boukenter A. [et al.] High γ-ray dose radiation effects on the performances of Brillouin scattering based optical fiber sensors. Optics Express, 2012. Vol. 20, No. 24. Pp. 26978–26985. DOI: https://www.doi.org/10.1364/OE.20.026978.

Stolov A.A., Warych E.T., Smith W.P. [et al.] Effects of sterilization on optical and mechanical reliability of specialty optical fibers and terminations. Proc. of the SPIE of Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XIV, United States, California, San Francisco, 2014. Vol. 8938. Pp. 893806. DOI: https://www.doi.org/10.1117/12.2036864.

Butov O.V., Golant K.M., Shevtsov I.A., Fedorov A.N. Fiber Bragg gratings in the radiation environment: Change under the influence of radiolytic hydrogen. Journal of Applied Physics, 2015. Vol. 118. Pp. 074502. DOI: https://www.doi.org/10.1063/1.4928966.

Fernandez A.F., Brichard B., Berghmans F., Decreton M. Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters. IEEE Transactions on Nuclear Science, 2002. Vol. 49, No. 6. Pp. 2874–2878. DOI: https://www.doi.org/10.1109/TNS.2002.805985.

Maier R.R.J., MacPherson W.N., Barton J.S. [et al.] Fibre Bragg gratings of type I in SMF-28 and B/Ge fibre and type IIA B/Ge fibre under gamma radiation up to 0,54 MGy. Proc. of SPIE 17th International Conference on Optical Fibre Sensors, 2005. Vol. 5855. Pp. 511–514. DOI: https://www.doi.org/10.1117/12.624037.

Faustov A., Saffari P., Koutsides C. [et al.] Highly radiation sensitive type IA FBGs for future dosimetry applications. IEEE Transactions on Nuclear Science, 2012. Vol. 59, No. 4. Pp. 1180–1185. DOI: https://www.doi.org/10.1109/TNS.2012.2202247.

Krebber K., Henschel H., Weinand U. Fibre Bragg gratings as high dose radiation sensors? Measurement Science and Technology, 2006. Vol. 17, No. 5. Pp. 1095–1102. DOI: https://www.doi.org/10.1088/0957-0233/17/5/S26.

Baccini D.J., Hinckley S., Wild G., Banos C., Davies J. Gamma irradiation in fibre Bragg gratings. Proc. of 20th Australian Institute of Physics Congress, Australia, Sydney, 2012. Engineers Australia, 2012. Pp. 1–4.

Rana S., Subbaraman H., Fleming A., Kandadai N. Numerical analysis of radiation effects on fiber optic sensors. Sensors, 2021. Vol. 21. Pp. 4111-1–4111-17. DOI: https://www.doi.org/10.3390/s21124111.

Bhandaru S., Hu S., Fleetwood D.M., Weiss S.M. Total ionizing dose effects on silicon ring resonators. IEEE Transactions on nuclear science, 2015. Vol. 62, No. 1. Pp. 323–328. DOI: https://www.doi.org/10.1109/TNS.2014.2387772.

Grillanda S., Singh V., Raghunathan V. [et al.] Gamma radiation effects on silicon photonic waveguides. Optics Letters, 2016. Vol. 41, No. 13. Pp. 3053–3056. DOI: https://www.doi.org/10.1364/OL.41.003053.

Du Q., Huang Y., Ogbuu O. [et al.] Gamma radiation effects in amorphous silicon and silicon nitride photonic devices. Optics Letters, 2017. Vol. 42, No. 3. Pp. 587–590. DOI: https://www.doi.org/10.1364/OL.42.000587.

Zhuang Q., Yaosheng H., Yu M. [et al.] Embedded structure fiber-optic radiation dosimeter for radiotherapy applications. Optics Express, 2016. Vol. 24, No. 5. Pp. 5172–5185. DOI: https://www.doi.org/10.1364/OE.24.005172.

Suarez M.A., Lim T., Robillot L. [et al.] Miniaturized fiber dosimeter of medical ionizing radiations on a narrow optical fiber. Optics Express, 2019. Vol. 27, No. 24. Pp. 35588–35599. DOI: https://www.doi.org/10.1364/OE.27.035588.

Jia M., Wen J., Pan X. [et al.] Tapered fiber radiation sensor based on Ce/Tb:YAG crystals for remote γ-ray dosimetry. Optics Express, 2021. Vol. 29, No. 2. Pp. 1210–1220. DOI: https://www.doi.org/10.1364/OE.413822.

Novikov S.G., Chertoriyskiy A.A., Berintsev A.V. Optovolokonnaya dozimetricheskaya sistema na baze stsintillyatsionnogo opticheskogo volokna [Fiber optic dosimetry system based on scintillation optical fiber]. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2013. T. 15, No. 4. Pp. 1017–1023. (rus)

Goncharenko I., Marciniak M., Reabtsev V. Electric field sensing with liquid-crystal-filled slot waveguide microring resonators. Applied Optics, 2017. Vol. 56, No. 27. Pp. 7629–7635. DOI: https://www.doi.org/10.1364/AO.56.007629.

Загрузки


Просмотров аннотации: 192
Загрузок PDF: 98

Опубликован

2022-05-25

Как цитировать

Гончаренко, И. А., Ильюшонок, А. В. и Рябцев, В. Н. (2022) «Измерение поглощенной дозы ионизирующего излучения с помощью оптических волноводных структур», Вестник Университета гражданской защиты МЧС Беларуси, 6(2), сс. 159–175. doi: 10.33408/2519-237X.2022.6-2.159.

Наиболее читаемые статьи этого автора (авторов)