Длина начального участка осесимметричной турбулентной струи, образующейся в пенном розеточном оросителе для автоматических установок пожаротушения

Авторы

  • Алексей Олегович Лихоманов Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25 https://orcid.org/0000-0002-9374-1486
  • Андрей Николаевич Камлюк Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25 https://orcid.org/0000-0002-9347-0778

DOI:

https://doi.org/10.33408/2519-237X.2021.5-2.159

Ключевые слова:

распыливание, начальный участок струи, автоматическая установка пожаротушения, ороситель, пена, кратность пены, геометрические параметры оросителя, длина дужек оросителя

Аннотация

Цель. Выполнить анализ теоретических подходов к описанию структуры осесимметричных турбулентных струй, а также к расчету их начального участка в режиме распыливания. Теоретически рассчитать длину дужек пенного розеточного оросителя (т.е. расстояние от выходного отверстия оросителя до его розетки), при которой происходит наиболее интенсивное пенообразование, и сопоставить полученный результат с экспериментальными данными.

Методы. В ходе работы использовался ряд теоретических методов исследования (анализ, синтез, сравнение) для изучения подходов к описанию и расчету осесимметричных турбулентных струй, а также для сопоставления теоретически рассчитанных данных по длине дужек пенного розеточного оросителя с результатами эксперимента.

Результаты. Сформулирована гипотеза об оптимальной длине дужек L пенного розеточного оросителя с целью обеспечения наиболее интенсивного пенообразования в нем: оптимальная длина дужек должна равняться длине начального участка струи, образующейся на выходе из штуцера оросителя Lн, т.е. L = Lн. Рассчитаны нижний и верхний пределы диапазона значений длины начального участка струи воды, образующейся на выходе из штуцера розеточного оросителя определенной геометрии: 117 ≤ Lн ≤ 201 мм. При экспериментальном определении кратности пены (характеризует интенсивность пенообразования), генерируемой розеточным оросителем, для которого выполнялся теоретический расчет, оптимальное по данной характеристике пены значение длины дужек оказалось равным L = 114 ± 4 мм, что согласуется с теорией с поправкой на более низкий коэффициент поверхностного натяжения пенообразующего раствора по сравнению с обычной водой. Кроме того, предложено выражение для расчета длины начального участка струи для рассматриваемого штуцера пенного розеточного оросителя, которое в первом приближении может быть применено для оценки значения Lн при использовании разных марок и типов пенообразователей, а также при распыливании в газе с иной плотностью.

Область применения исследований. Полученные результаты могут быть использованы для дальнейшего изучения процесса пенообразования в розеточных оросителях для автоматических установок пожаротушения с целью повышения их огнетушащей эффективности. Предложенное выражение для расчета длины начального участка образующейся на выходе из пенного розеточного оросителя струи может быть применено для оценки значения данного параметра при использовании разных марок и типов пенообразователей, а также при распыливании в газе с иной плотностью.

Биографии авторов

Алексей Олегович Лихоманов, Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25

кафедра автоматических систем безопасности, преподаватель

Андрей Николаевич Камлюк, Университет гражданской защиты МЧС Беларуси; 220118, Беларусь, Минск, ул. Машиностроителей, 25

заместитель начальника университета по научной и инновационной деятельности; кандидат физико-математических наук, доцент

Библиографические ссылки

Portillo J.E., Collicott S.H., Blaisdell G.A. Measurements of axial instability waves in the near exit region of a high speed liquid jet. Physics of Fluids, 2011. Vol. 23, No. 12. Pp. 124105-1–124105-13. DOI: https://www.doi.org/10.1063/1.3671733.

Gong Ch., Ou M., Jia W. The effect of nozzle configuration on the evolution of jet surface structure. Results in Physics, 2019. Vol. 15. Pp. 102572-1–102572-11. DOI: https://www.doi.org/10.1016/j.rinp.2019.102572.

Eggers J., Villermaux E. Physics of liquid jets. Reports on Progress in Physics, 2008. Vol. 71, No. 3. Pp. 036601-1–036601-79. DOI: https://www.doi.org/10.1088/0034-4885/71/3/036601.

Shinjo J., Umemura A. Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 2010. Vol. 36, Iss. 7. Pp. 513–532. DOI: https://www.doi.org/10.1016/j.ijmultiphaseflow.2010.03.008.

Shinjo J., Umemura A. Surface instability and primary atomization characteristics of straight liquid jet sprays. International Journal of Multiphase Flow, 2011. Vol. 37, Iss. 10. Pp. 1294–1304. DOI: https://www.doi.org/10.1016/j.ijmultiphaseflow.2011.08.002.

Yoon S.S., Heister S.D. A fully non-linear model for atomization of high-speed jets. Engineering Analysis with Boundary Elements, 2004. Vol. 28, Iss. 4. Pp. 345–357. DOI: https://www.doi.org/10.1016/S0955-7997(03)00083-3.

Akimov V.S., Bartenev G.Yu. Modelirovanie raspada struy, formiruemykh forsunkami s ispol'zovaniem PK FLOWVISION [Simulation of the disintegration of jets formed by nozzles using the software FLOWVISION]. Proc. of the International Forum «Inzhenernye sistemy – 2015», Moscow, Apr. 6–7, 2015. Moscow: MAKS Press, 2015. Pp. 243–249. (rus)

Tafreshi H.V., Pourdeyhimi B. The effects of nozzle geometry on waterjet breakup at high Reynolds numbers. Experiments in Fluids, 2003. Vol. 35, No. 4. Pp. 364–371. DOI: https://www.doi.org/10.1007/s00348-003-0685-y.

Levich V.G. Fiziko-khimicheskaya gidrodinamika [Physicochemical hydrodynamics]. 3rd ed., revised. Moscow; Izhevsk: Institute of Computer Science, 2016. 708 p. (rus)

Jie H. [et al.]. Investigation on surface wave characteristic of water jet. Mathematical Problems in Engineering, 2019. Vol. 2019. Pp. 4047956-1–4047956-10. DOI: https://www.doi.org/10.1155/2019/4047956.

Lin S.P., Reitz R.D. Drop and spray formation from a liquid jet. Annual Review of Fluid Mechanics, 1998. Vol. 30. Pp. 85–105. DOI: https://www.doi.org/10.1146/annurev.fluid.30.1.85.

Trettel B. Reevaluating the jet breakup regime diagram. Atomization and Sprays, 2020. Vol. 30, No. 7. Pp. 517–556. DOI: https://www.doi.org/10.1615/AtomizSpr.2020033171.

Liu H.M. Science and Engineering of Droplets: Fundamentals and Applications. Norwich, NY: William Andrew Publishing, 2000. 539 p.

Ohnesorge W.V. Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen [The formation of drops on nozzles and the dissolution of liquid jets]. Journal of Applied Mathematics and Mechanics, 1936. Vol. 16, No. 6. Pp. 355–358. (deu). DOI: https://www.doi.org/10.1002/zamm.19360160611.

Reitz R.D. Atomization and other Breakup Regimes of a liquid jet. Ph.D. Thesis. Princeton Univ., NJ, 1978. 331 p.

Schmid A.M. Experimental characterization of the two phase flow of a modern, piezo activated hollow cone injector. Ph.D. Thesis. ETH Zurich, 2012. 166 p. DOI: https://www.doi.org/10.3929/ethz-a-009765879.

Vorob'ev S.V., Postnikova I.V., Blinichev V.N. Opredelenie skorosti i kontsentratsii chastits tverdoy fazy v turbulentnoy strue gaza, pogruzhennoy v psevdoozhizhennyy sloy [Determination of the velocity and concentration of solid phase particles in a turbulent gas jet immersed in a fluidized bed]. Russian Journal of General Chemistry, 2019. Vol. LXII, No. 3–4. Pp. 31–39. (rus)

Leu M.C. [et al.]. Mathematical modeling and experimental verification of stationary waterjet cleaning process. Journal of Manufacturing Science and Engineering, 1998. Vol. 120, No. 3. Pp. 571–579. DOI: https://www.doi.org/10.1115/1.2830161.

Liu X. [et al.]. Experimental study on jet flow characteristics of fire water monitor. The Journal of Engineering, 2019. Iss. 13. Pp. 150–154. DOI: https://www.doi.org/10.1049/joe.2018.8950.

Vinogradov A.G., Yakhno O.M. Raschet parametrov protivopozharnykh struy raspylennoy vody [Calculation of parameters of fire-prevention jets of sprayed water]. Journal «Applied Hydromechanics», 2015. Vol. 17, No. 4. Pp. 3–13. (rus)

Abramovich G.N. Teoriya turbulentnykh struy [The theory of turbulent jets]. Reprint reproduction of the 1960 edition. Moscow: EKOLIT, 2011. 720 p. (rus)

Pavlovic Z. [et al.]. Numerical investigation of the liquid core length in sprays with fully turbulent boundary condition. Proc. ILASS – Europe 2014, 26th Annual Conference on Liquid Atomization and Spray Systems, Bremen, Germany, Sep. 8–10, 2014. Institute for Liquid Atomization and Spray Systems. Bremen, 2014. 11 p.

Trettel B. Conditional damped random surface velocity model of turbulent jet breakup. Atomization and Sprays, 2020. Vol. 30, Iss. 8. Pp. 575–606. DOI: https://www.doi.org/10.1615/AtomizSpr.2020033172.

Trettel B. Modeling the breakup and trajectory of water jets with application to fire suppression. Ph.D. Thesis. University of Texas at Austin, 2020.

Kamluk A.N., Likhomanov A.O. Increasing foam expansion rate by means of changing the sprinkler geometry. Fire Safety Journal, 2019. Vol. 109. Pp. 102862-1–102862-8. DOI: https://www.doi.org/10.1016/j.firesaf.2019.102862.

Kamluk A.N., Likhomanov A.O., Grachulin A.V. Field testing and extinguishing efficiency comparison of the optimized for higher expansion rates deflector type sprinkler with other foam and foam-water sprinklers. Fire Safety Journal, 2020. Vol. 116. Pp. 103177-1–103177-10. DOI: https://www.doi.org/10.1016/j.firesaf.2020.103177.

Загрузки


Просмотров аннотации: 360
Загрузок PDF: 141

Опубликован

2021-05-25

Как цитировать

Лихоманов, А. О. и Камлюк, А. Н. (2021) «Длина начального участка осесимметричной турбулентной струи, образующейся в пенном розеточном оросителе для автоматических установок пожаротушения», Вестник Университета гражданской защиты МЧС Беларуси, 5(2), сс. 159–173. doi: 10.33408/2519-237X.2021.5-2.159.

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>